458 research outputs found
Insulin trafficking in a glucose responsive engineered human liver cell line is regulated by the interaction of ATP-sensitive potassium channels and voltage- gated calcium channels
Type I diabetes is caused by the autoimmune destruction of pancreatic beta (â) cells [1]. Current treatment requires multiple daily injections of insulin to control blood glucose levels. Tight glucose control lowers, but does not eliminate, the onset of diabetic complications, which greatly reduce the quality and longevity of life for patients. Transplantation of pancreatic tissue as a treatment is restricted by the scarcity of donors and the requirement for lifelong immunosuppression to preserve the graft, which carries adverse side-effects. This is of particular concern as Type 1 diabetes predominantly affects children. Lack of glucose control could be overcome by genetically engineering "an artificial â-cell" that is capable of synthesising, storing and secreting insulin in response to metabolic signals. The donor cell type must be readily accessible and capable of being engineered to synthesise, process, store and secrete insulin under physiological conditions
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Aquaporin water channels in the nervous system.
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage
A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis
BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF
transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport,
chronic lung infections, inflammation and eventual respiratory failure. With the exception of the
small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is
suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect.
The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy
formulation through preclinical and clinical development.
OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of
1 year in patients with CF.
DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome
complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward
Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1).
Allocation was blinded by masking nebuliser chambers.
SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm,
version 4.6 database.
PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1)
between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group
(≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene
therapy (78 randomised).
INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at
28 (±5)-day intervals over 1 year.
MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1
over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety
measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural
disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a
validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory
markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene
deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and
lower airway potential difference.
RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI)
0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital
capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching
statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective
of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4%
(95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more
mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI.
The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No
difference in treatment-attributable AEs was seen between the placebo and active groups.
CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with
an improvement in lung function, other clinically relevant parameters and bronchial CFTR function,
compared with placebo.
LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by
detectable improvement in patients’ quality of life.
FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency,
the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of
repeated administration.
TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867
Global cooling as a driver of diversification in a major marine clade
Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems
Psychological responses to the proximity of climate change
A frequent suggestion to increase individuals’ willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences. However, previous studies that have tested this proximising approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualisation of the proximising approach within established psychological research suggests that, depending on the particular theoretical perspective one takes to this issue, and on specific individual characteristics suggested by these perspectives, proximising can bring about the intended positive effects, can have no (visible) effect, or can even backfire. Thus, the effects of proximising are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions
Unique contributions to the scalar bispectrum in `just enough inflation'
A scalar field rolling down a potential with a large initial velocity results
in inflation of a finite duration. Such a scenario suppresses the scalar power
on large scales improving the fit to the cosmological data. We find that the
scenario leads to a hitherto unexplored situation wherein the boundary terms
dominate the contributions to the scalar bispectrum over the bulk terms. We
show that the consistency relation governing the non-Gaussianity parameter
is violated on large scales and that the contributions at the
initial time can substantially enhance the value of .Comment: v1: 5 pages, 4 figure
UK-Wide Surveillance of Neurological and Neuropsychiatric Complications of COVID-19: The First 153 Patients
Background: Increasingly neurological complications of COVID-19 are identified, mostly in small series. Larger studies have been limited by both geography and specialty.Consequently, the breadth of complications is not represented. Comprehensive characterization of clinical syndromes is critical to rationally select and evaluate potential therapies.Methods: During the exponential pandemic phase, we developed coordinated online portals for rapid notification across the spectrum of major UK neuroscience bodies, representing neurology, stroke, psychiatry, and intensive care. Evidence of infection and clinical case definitions were applied prospectively. Cases were compared to overall Government Public Health COVID-19 reporting.Findings: Within three weeks, 153 cases were notified, both geographically and temporally representative of overall COVID-19 Public Health reports. Median (range) age was 71 (23-94) years. 77 (62%) had a cerebrovascular event: 57 (74%) ischemic strokes, nine (12%) intracerebral hemorrhages, and one CNS vasculitis.The second most common group were 39 (31%) who had altered mental status, including 16 (41%) with encephalopathy of whom seven (44%) had encephalitis. The remaining 23 (59%) had a psychiatric diagnosis of whom 21 (92%) were new diagnoses; including ten (43%) with psychosis, six (26%) neurocognitive (dementia-like) syndrome, and 4 (17%) an affective disorder. Cerebrovascular events predominated in older patients. Conversely, altered mental status, whilst present in all ages, had disproportionate representation in the young.Interpretation: This is the first nationwide, cross-specialty surveillance study of acute complications of COVID-19 in the nervous system. Alteration in mental status was common, reflecting encephalopathy/encephalitis and primary psychiatric diagnoses, often in young patients.These data provide valuable and timely information urgently needed by clinicians, researchers, and funders to inform immediate steps in COVID-19 neuroscience research and health policy throughout the areas of neurology and neuropsychiatry
- …
