36 research outputs found

    Ocrelizumab exposure in relapsing–remitting multiple sclerosis: 10-year analysis of the phase 2 randomized clinical trial and its extension

    Get PDF
    Open-label extension (OLE) studies help inform long-term safety and efficacy of disease-modifying therapies in multiple sclerosis (MS). We report exploratory analyses from a phase 2 trial on the longest follow-up to date of ocrelizumab-treated patients with relapsing–remitting MS (RRMS). The primary treatment period (PTP) comprised four 24-week treatment cycles; participants were randomized to double-blind ocrelizumab (2000 mg or 600 mg), placebo, or interferon β-1a (open label) for one cycle, then dose-blinded ocrelizumab 1000 mg or 600 mg for the remaining cycles. The PTP was followed by consecutive assessed and unassessed treatment-free periods (TFPs) and then the OLE (ocrelizumab 600 mg every 24 weeks). Safety and efficacy were prospectively assessed. Of 220 participants randomized, 183 (84%) completed the PTP. After the TFP, 103 entered OLE (median OLE ocrelizumab exposure 6.5 years). Most common adverse events across all periods were infusion-related reactions. MRI activity, annualized relapse rate, and confirmed disability progression (CDP) rates remained low throughout. During the assessed TFP, there was a trend toward less and later B-cell repletion, and later CDP, for patients randomized to ocrelizumab; MRI activity was observed in 16.3% of patients, the earliest 24 weeks after the last ocrelizumab dose. This is the longest follow-up of ocrelizumab-treated patients with RRMS, with no new safety signals emerging during an observation period from 2008 to 2020. Results reinforce the sustained efficacy of long-term ocrelizumab. Reduced disease activity was maintained following interruption of 6-month dosing cycles, with no evidence of rebound

    Reducing the probability of false positive research findings by pre-publication validation – Experience with a large multiple sclerosis database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Published false positive research findings are a major problem in the process of scientific discovery. There is a high rate of lack of replication of results in clinical research in general, multiple sclerosis research being no exception. Our aim was to develop and implement a policy that reduces the probability of publishing false positive research findings.</p> <p>We have assessed the utility to work with a pre-publication validation policy after several years of research in the context of a large multiple sclerosis database.</p> <p>Methods</p> <p>The large database of the Sylvia Lawry Centre for Multiple Sclerosis Research was split in two parts: one for hypothesis generation and a validation part for confirmation of selected results. We present case studies from 5 finalized projects that have used the validation policy and results from a simulation study.</p> <p>Results</p> <p>In one project, the "relapse and disability" project as described in section II (example 3), findings could not be confirmed in the validation part of the database. The simulation study showed that the percentage of false positive findings can exceed 20% depending on variable selection.</p> <p>Conclusion</p> <p>We conclude that the validation policy has prevented the publication of at least one research finding that could not be validated in an independent data set (and probably would have been a "true" false-positive finding) over the past three years, and has led to improved data analysis, statistical programming, and selection of hypotheses. The advantages outweigh the lost statistical power inherent in the process.</p

    2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis

    Get PDF
    The 2015 Magnetic Resonance Imaging in Multiple Sclerosis and 2016 Consortium of Multiple Sclerosis Centres guidelines on the use of MRI in diagnosis and monitoring of multiple sclerosis made an important step towards appropriate use of MRI in routine clinical practice. Since their promulgation, there have been substantial relevant advances in knowledge, including the 2017 revisions of the McDonald diagnostic criteria, renewed safety concerns regarding intravenous gadolinium-based contrast agents, and the value of spinal cord MRI for diagnostic, prognostic, and monitoring purposes. These developments suggest a changing role of MRI for the management of patients with multiple sclerosis. This 2021 revision of the previous guidelines on MRI use for patients with multiple sclerosis merges recommendations from the Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative, and translates research findings into clinical practice to improve the use of MRI for diagnosis, prognosis, and monitoring of individuals with multiple sclerosis. We recommend changes in MRI acquisition protocols, such as emphasising the value of three dimensional-fluid-attenuated inversion recovery as the core brain pulse sequence to improve diagnostic accuracy and ability to identify new lesions to monitor treatment effectiveness, and we provide recommendations for the judicious use of gadolinium-based contrast agents for specific clinical purposes. Additionally, we extend the recommendations to the use of MRI in patients with multiple sclerosis in childhood, during pregnancy, and in the post-partum period. Finally, we discuss promising MRI approaches that might deserve introduction into clinical practice in the near future

    Does MRI lesion activity regress in secondary progressive multiple sclerosis?

    Full text link
    Background: The rate of new contrast-enhancing lesions (CELs) on monthly magnetic resonance imaging (MRI) scans has been shown to decrease over a 9-month period in placebo-treated patients with relapsing—remitting (RR) multiple sclerosis (RRMS). Objective: We examined this phenomenon in placebo-treated secondary progressive MS (SPMS) patients. Methods: Patients were chosen from two clinical trials. Monthly scans were taken at screening, baseline and months 1—9 for Cohort-1 and months 1—6 for Cohort-2. We examined the monthly new CEL rates according to initial CEL level: 0, 1—3, &gt;3 CELs at screening, and presence and absence of pre-study relapses. Results: Respectively, 59, 21 and 14 of the 94 Cohort-1 patients, and 36, 17 and 9 of the 62 Cohort-2 patients had 0, 1—3 and &gt;3 initial CELs. For Cohort-1, the monthly new CEL rates did not change during follow-up, regardless of initial CEL level. For Cohort-2, the monthly rate was unchanged in the 0 initial CEL subgroup, but decreased 33% (95% confidence interval: 8%, 52%) from months 1—3 to months 4—6 in the other two subgroups. For the combined cohorts, a decreasing rate was observed in the 12 patients with &gt;3 initial CELs and pre-study relapses. Conclusions: The short-term trend of new CEL activity in placebo-treated SPMS patients may vary across cohorts. </jats:p

    Reduction in magnetic resonance imaging T2 burden of disease in patients with relapsing-remitting multiple sclerosis: analysis of 48-week data from the EVIDENCE (EVidence of Interferon Dose-response: European North American Comparative Efficacy) study

    No full text
    Background: The EVIDENCE (EVidence of Interferon Dose-response: European North American Comparative Efficacy) study was an international, randomized, open-label, assessor-blinded, parallel-group study assessing the efficacy and tolerability of interferon (IFN) beta-1a, 44 mcg subcutaneously (sc) three times weekly (tiw), and IFN beta-1a, 30 mcg intramuscularly (im) once weekly (qw), in patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this analysis was to assess whether reductions in T2 burden of disease (BOD) were greater for patients receiving IFN beta-1a, 44 mcg sc tiw, than for those treated with IFN beta-1a, 30 mcg im qw, and to assess the impact of neutralizing antibodies (NAbs). Methods: A post-hoc analysis was performed on magnetic resonance imaging (MRI) data collected prospectively from the EVIDENCE study. The analysis included all patients with evaluable T2 MRI scans at the start of dosing and at week 48, and those who received at least one drug dose (n = 553). Lesions were identified by a radiologist blinded to treatment codes and the total volume of T2 lesions (BOD) was reported in mm3. Results: Both median percentage decreases and absolute reduction in BOD were greater in the IFN beta-1a, 44 mcg sc tiw, treatment group. The adjusted mean treatment difference in percentage change in BOD from baseline to week 48 showed a significant treatment benefit for patients treated with IFN beta-1a, 44 mcg sc tiw, over those treated with IFN beta-1a, 30 mcg im qw (-4.6%; standard error: 2.6%; p = 0.002). The presence of NAbs reduced the effect of IFN beta-1a 44, mcg sc tiw, on BOD, but BOD changes were still similar to those seen with IFN beta-1a, 30 mcg im qw. Conclusion: Patients with RRMS treated with IFN beta-1a, 44 mcg sc tiw, had greater reduction in T2 BOD after 48 weeks than those treated with IFN beta-1a, 30 mcg im qw, which is consistent with other clinical and MRI outcome measures in the EVIDENCE study. In patients testing positive for NAbs (NAb+) to IFN beta-1a 44 mcg sc tiw, changes in BOD were smaller than in NAb negative (NAb-) patients, but similar to those receiving IFN beta-1a, 30 mcg im qw.Medicine, Faculty ofNeurology, Division ofRadiology, Department ofMedicine, Department ofReviewedFacult

    Progressive multiple sclerosis exhibits decreasing glutamate and glutamine over two years

    Full text link
    Background: Few biomarkers of progressive multiple sclerosis (MS) are sensitive to change within the two-year time frame of a clinical trial. Objective: To identify biomarkers of MS disease progression with magnetic resonance spectroscopy (MRS) in secondary progressive MS (SPMS). Methods: Forty-seven SPMS subjects were scanned at baseline and annually for two years. Concentrations of N-acetylaspartate, total creatine, total choline, myo-inositol, glutamate, glutamine, and the sum glutamate+glutamine were measured in a single white matter voxel. Results: Glutamate and glutamine were the only metabolites to show an effect with time: with annual declines of (95% confidence interval): glutamate −4.2% (−6.2% to −2.2%, p &lt; 10−4), glutamine −7.3% (−11.8% to −2.9%, p = 0.003), and glutamate+glutamine −5.2% (−7.6% to −2.8%, p &lt; 10−4). Metabolite rates of change were more apparent than changes in clinical scores or brain atrophy measures. Conclusions: The high rates of change of both glutamate and glutamine over two years suggest they are promising new biomarkers of MS disease progression. </jats:sec

    Subcutaneous interferon β-1a three times weekly and the natural evolution of gadolinium-enhancing lesions into chronic black holes in relapsing and progressive multiple sclerosis: Analysis of PRISMS and SPECTRIMS trials

    Full text link
    Background Evolution of gadolinium-enhancing lesions into chronic black holes (CBH) may be reduced by interferon (IFN) therapy. Objective The objective of this paper is to assess the effect of IFN β-1a and placebo on CBH evolution and disability in patients with relapsing–remitting multiple sclerosis (RRMS), as well as CBH evolution in patients with secondary progressive multiple sclerosis (SPMS). Methods A post hoc, exploratory analysis of patients with RRMS and SPMS with monthly MRI scans (months –1 to 9) from two separate placebo-controlled clinical trials of IFN β-1a was conducted. Results In RRMS patients, the risk of ≥1 evolved CBH was lower for IFN β-1a versus placebo (odds ratio 0.42; p = 0.024); volume of newly evolved CBH was numerically reduced. A numerically higher proportion of patients with ≥1 evolving CBH vs no evolving CBH had confirmed three-month disability progression (four-year rate 55.8% vs 43.1%, respectively). Proportion of lesions evolving into CBH (patient level: 34.7% vs 12.6%, p &lt; 0.0001; lesion level: 28.8% vs 11.0%, p &lt; 0.0001) and evolved CBH volume (median 33.5 mm3 (Quartile 1, 0.0; Quartile 3, 173.4) vs 0.0 mm3 (0.0; 52.4); p = 0.0008) was higher for SPMS than RRMS patients treated with IFN β-1a. Conclusion In RRMS, IFN β-1a significantly decreased the proportion of new T1 Gd+ lesions evolving into CBH and the risk of developing a CBH. In patients with SPMS, more lesions develop to CBH, indicating reduced repair capacity, and the natural history of lesion development appears to be unaffected by IFN β-1a treatment. </jats:sec

    Quantitative MRI findings indicate diffuse white matter damage in Susac Syndrome

    No full text
    Background Susac Syndrome (SuS) is an autoimmune endotheliopathy impacting the brain, retina and cochlea that can clinically mimic multiple sclerosis (MS). Objective To evaluate non-lesional white matter demyelination changes in SuS compared to MS and healthy controls (HC) using quantitative MRI. Methods 3T MRI including myelin water imaging and diffusion basis spectrum imaging were acquired for 7 SuS, 10 MS and 10 HC participants. Non-lesional white matter was analyzed in the corpus callosum (CC) and normal appearing white matter (NAWM). Groups were compared using ANCOVA with Tukey correction. Results SuS CC myelin water fraction (mean 0.092) was lower than MS(0.11, p = 0.01) and HC(0.11, p = 0.04). Another myelin marker, radial diffusivity, was increased in SuS CC(0.27μm2/ms) compared to HC(0.21μm2/ms, p = 0.008) and MS(0.23μm2/ms, p = 0.05). Fractional anisotropy was lower in SuS CC(0.82) than HC(0.86, p = 0.04). Fiber fraction (reflecting axons) did not differ from HC or MS. In NAWM, radial diffusivity and apparent diffusion coefficient were significantly increased in SuS compared to HC(p &lt; 0.001 for both measures) and MS(p = 0.003, p &lt; 0.001 respectively). Conclusions Our results provided evidence of myelin damage in SuS, particularly in the CC, and more extensive microstructural injury in NAWM, supporting the hypothesis that there are widespread microstructural changes in SuS syndrome including diffuse demyelination. </jats:sec

    Onset of clinical and MRI efficacy of ocrelizumab in relapsing multiple sclerosis

    Get PDF
    OBJECTIVE: To assess the onset of ocrelizumab efficacy on brain MRI measures of disease activity in the phase II study in relapsing-remitting multiple sclerosis (RRMS), and relapse rate in the pooled phase III studies in relapsing multiple sclerosis (RMS). METHODS: Brain MRI activity was determined in the phase II trial at monthly intervals in patients with RRMS receiving placebo, ocrelizumab (600 mg), or intramuscular interferon (IFN) β-1a (30 μg). Annualized relapse rate (ARR; over various epochs) and time to first relapse were analyzed in the pooled population of the phase III OPERA (A Study of Ocrelizumab in Comparison With Interferon Beta-1a [Rebif] in Participants With Relapsing Multiple Sclerosis) I and OPERA II trials in patients with RMS receiving ocrelizumab (600 mg) or subcutaneous IFN-β-1a (44 μg). RESULTS: In patients with RRMS, ocrelizumab reduced the number of new T1 gadolinium-enhancing lesions by week 4 vs placebo (p = 0.042) and by week 8 vs intramuscular IFN-β-1a (p < 0.001). Ocrelizumab also reduced the number of new or enlarging T2 lesions appearing between weeks 4 and 8 vs both placebo and IFN-β-1a (both p < 0.001). In patients with RMS, ocrelizumab significantly reduced ARR (p = 0.005) and the probability of time to first protocol-defined relapse (p = 0.014) vs subcutaneous IFN-β-1a within the first 8 weeks. CONCLUSION: Epoch analysis of MRI-measured lesion activity in the phase II study and relapse rate in the phase III studies consistently revealed a rapid suppression of acute MRI and clinical disease activity following treatment initiation with ocrelizumab in patients with RRMS and RMS, respectively. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with RRMS and RMS, ocrelizumab suppressed MRI activity within 4 weeks and clinical disease activity within 8 weeks
    corecore