359 research outputs found
A Computational Approach for Designing Tiger Corridors in India
Wildlife corridors are components of landscapes, which facilitate the
movement of organisms and processes between intact habitat areas, and thus
provide connectivity between the habitats within the landscapes. Corridors are
thus regions within a given landscape that connect fragmented habitat patches
within the landscape. The major concern of designing corridors as a
conservation strategy is primarily to counter, and to the extent possible,
mitigate the effects of habitat fragmentation and loss on the biodiversity of
the landscape, as well as support continuance of land use for essential local
and global economic activities in the region of reference. In this paper, we
use game theory, graph theory, membership functions and chain code algorithm to
model and design a set of wildlife corridors with tiger (Panthera tigris
tigris) as the focal species. We identify the parameters which would affect the
tiger population in a landscape complex and using the presence of these
identified parameters construct a graph using the habitat patches supporting
tiger presence in the landscape complex as vertices and the possible paths
between them as edges. The passage of tigers through the possible paths have
been modelled as an Assurance game, with tigers as an individual player. The
game is played recursively as the tiger passes through each grid considered for
the model. The iteration causes the tiger to choose the most suitable path
signifying the emergence of adaptability. As a formal explanation of the game,
we model this interaction of tiger with the parameters as deterministic finite
automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201
Light States in Chern-Simons Theory Coupled to Fundamental Matter
Motivated by developments in vectorlike holography, we study SU(N)
Chern-Simons theory coupled to matter fields in the fundamental representation
on various spatial manifolds. On the spatial torus T^2, we find light states at
small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken
to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N
and in the critical scalar theory and the free fermion theory they are of order
\lambda/N. The entropy of these states grows like N Log(k). We briefly consider
spatial surfaces of higher genus. Based on results from pure Chern-Simons
theory, it appears that there are light states with entropy that grows even
faster, like N^2 Log(k). This is consistent with the log of the partition
function on the three sphere S^3, which also behaves like N^2 Log(k). These
light states require bulk dynamics beyond standard Vasiliev higher spin gravity
to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added,
The main results of the paper have not change
The MACHO Project Large Magellanic Cloud Variable Star Inventory. VIII. The Recent Star Formation History of the LMC from the Cepheid Period Distribution
We present an analysis of the period distribution of Cepheids in the Large Magellanic Cloud, based on data obtained by the MACHO microlensing experiment and on a previous catalogue by Payne-Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared to the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC ( years). We also show that during the last years, the main center of star formation has been propagating from SE to NW along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by % and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are Cepheids with periods below days cannot be explained by evolution theory. We suggest that they are anomalous Cepheids; a number of these stars are double-mode Cepheids
Constructing a climate change logic: An institutional perspective on the "tragedy of the commons"
Despite increasing interest in transnational fields, transnational commons have received little attention. In contrast to economic models of commons, which argue that commons occur naturally and are prone to collective inaction and tragedy, we introduce a social constructionist account of commons. Specifically, we show that actor-level frame changes can eventually lead to the emergence of an overarching, hybrid "commons logic" at the field level. These frame shifts enable actors with different logics to reach a working consensus and avoid "tragedies of the commons." Using a longitudinal analysis of key actors' logics and frames, we tracked the evolution of the global climate change field over 40 years. We bracketed time periods demarcated by key field-configuring events, documented the different frame shifts in each time period, and identified five mechanisms (collective theorizing, issue linkage, active learning, legitimacy seeking, and catalytic amplification) that underpin how and why actors changed their frames at various points in time-enabling them to move toward greater consensus around a transnational commons logic. In conclusion, the emergence of a commons logic in a transnational field is a nonlinear process and involves satisfying three conditions: (1) key actors view their fates as being interconnected with respect to a problem issue, (2) these actors perceive their own behavior as contributing to the problem, and (3) they take collective action to address the problem. Our findings provide insights for multinational companies, nation-states, nongovernmental organizations, and other stakeholders in both conventional and unconventional commons
A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior
It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions
An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data
Citation: Shi, Z. Z., Chapes, S. K., Ben-Arieh, D., & Wu, C. H. (2016). An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data. Plos One, 11(8), 39. doi:10.1371/journal.pone.0161131We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-a ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies
Admission hypo- or hyperthermia and survival after trauma in civilian and military environments
XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs)-languages for which NLP research is particularly far behind in meeting user needs-it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks-tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario is most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, question answering, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides a methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark
Induced Cooperation to Access a Shareable Reward Increases the Hierarchical Segregation of Wild Vervet Monkeys
Until now cooperation experiments in primates have paid little attention to how cooperation can emerge and what effects are produced on the structure of a social group in nature. I performed field experiments with three groups of wild vervet monkeys in South Africa. I induced individuals to repeatedly approach and operate food containers. At least two individuals needed to operate the containers in order to get the reward. The recurrent partner associations observed before the experiment only partly predicted the forming of cooperative partnerships during the experiment. While most of the tested subjects cooperated with other partners, they preferred to do so with specific combinations of individuals and they tended not to mix with other group members outside these preferred partnerships. Cooperation therefore caused the relatively homogeneous networks I observed before the experiment to differentiate. Similar to a matching market, the food sharing partners selected each other limiting their choice. Interestingly neither sex nor age classes explained the specific partner matching. Kinship could not explain it either. Rather, higher ranking individuals cooperated with other higher ranking individuals, and lower ranking also matched among the same rank. This study reveals the key role dominance rank plays when food resources are patchy and can only be accessed through sharing with other individuals
Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa
Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic
radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of
the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity
hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an
excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa.
Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the
Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling
analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from
north to south to form two geographically isolated groups. The northern group diverged into a clade north of the
Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The
latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation
and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations
seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade
occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the
clades of the northern group but were similar among clades of the southern group.
Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis
of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic
uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution
of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the
Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A
and Pv-
- …
