195 research outputs found
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
Pride and confidence at work: potential predictors of occupational health in a hospital setting
BACKGROUND: This study focuses on determinants of a healthy work environment in two departments in a Swedish university hospital. The study is based on previously conducted longitudinal studies at the hospital (1994–2001), concerning working conditions and health outcomes among health care personnel in conjunction with downsizing processes. Overall, there was a general negative trend in relation to mental health, as well as long-term sick leave during the study period. The two departments chosen for the current study differed from the general hospital trend in that they showed stable health development. The aim of the study was to identify and analyse experiential determinants of healthy working conditions. METHODS: Thematic open-ended interviews were carried out with seventeen managers and key informants, representing different groups of co-workers in the two departments. The interviews were transcribed verbatim and an inductive content analysis was made. RESULTS: In the two studied departments the respondents perceived that it was advantageous to belong to a small department, and to work in cooperation-oriented care. The management approaches described by both managers and co-workers could be interpreted as transformational, due to a strain of visionary, delegating, motivating, confirmative, supportive attitudes and a strongly expressed solution-oriented attitude. The daily work included integrated learning activities. The existing organisational conditions, approaches and attitudes promoted tendencies towards a work climate characterised by trust, team spirit and professionalism. In the description of the themes organisational conditions, approaches and climate, two core determinants, work-pride and confidence, for healthy working conditions were interpreted. Our core determinants augment the well-established concepts: manageability, comprehensiveness and meaningfulness. These favourable conditions seem to function as a buffer against the general negative effects of downsizing observed elsewhere in the hospital, and in the literature. CONCLUSION: Research illuminating health-promoting aspects is rather unusual. This study could be seen as explorative. The themes and core dimensions we found could be used as a basis for further intervention studies in similar health-care settings. The result could also be used in future health promotion studies in larger populations. One of the first steps in such a strategy is to formulate relevant questions, and we consider that this study contributes to this
Chaperonin Containing T-Complex Polypeptide Subunit Eta (CCT-eta) Is a Specific Regulator of Fibroblast Motility and Contractility
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression
Multisensory Perceptual Learning of Temporal Order: Audiovisual Learning Transfers to Vision but Not Audition
Background: An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Methodology/Principal Findings: Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes
Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation
The Schistosoma mansoni Venom Allergen Like proteins (SmVALs) have been identified in the Transcriptome and Post-Genomic studies as targets for immune interventions. Two secreted members of the family were obtained as recombinant proteins in the native conformation. Antibodies produced against them showed that SmVAL4 was present mostly in cercarial secretions and SmVAL26 in egg secretions and that only the native SmVAL4 contained carbohydrate moieties. Due to concerns with potential allergic characteristics of this class of molecules, we have explored the mouse model of airway inflammation in order to investigate these properties in a more confined system. Sensitization and challenge with rSmVAL4, but not rSmVAL26, induced extensive migration of cells to the lungs, mostly eosinophils and macrophages; moreover, immunological parameters were also characteristic of an allergic inflammatory response. Our results showed that the allergic potential of this class of proteins can be variable and that the vaccine candidates should be characterized; the mouse model of airway inflammation can be useful to evaluate these properties
Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs
The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs
Pseudomonas aeruginosa PilY1 Binds Integrin in an RGD- and Calcium-Dependent Manner
PilY1 is a type IV pilus (tfp)-associated protein from the opportunistic pathogen Pseudomonas aeruginosa that shares functional similarity with related proteins in infectious Neisseria and Kingella species. Previous data have shown that PilY1 acts as a calcium-dependent pilus biogenesis factor necessary for twitching motility with a specific calcium binding site located at amino acids 850–859 in the 1,163 residue protein. In addition to motility, PilY1 is also thought to play an important role in the adhesion of P. aeruginosa tfp to host epithelial cells. Here, we show that PilY1 contains an integrin binding arginine-glycine-aspartic acid (RGD) motif located at residues 619–621 in the PilY1 from the PAK strain of P. aeruginosa; this motif is conserved in the PilY1s from the other P. aeruginosa strains of known sequence. We demonstrate that purified PilY1 binds integrin in vitro in an RGD-dependent manner. Furthermore, we identify a second calcium binding site (amino acids 600–608) located ten residues upstream of the RGD. Eliminating calcium binding from this site using a D608A mutation abolished integrin binding; in contrast, a calcium binding mimic (D608K) preserved integrin binding. Finally, we show that the previously established PilY1 calcium binding site at 851–859 also impacts the protein's association with integrin. Taken together, these data indicate that PilY1 binds to integrin in an RGD- and calcium-dependent manner in vitro. As such, P. aeruginosa may employ these interactions to mediate host epithelial cell binding in vivo
Adnexal masses: benign ovarian lesions and characterization - benign ovarian masses
Incidental adnexal masses are commonly identified
in radiologists’ daily practice. Most of
them are benign ovarian lesions of no concern.
However, sometimes defining the origin of a
pelvic mass may be challenging, especially on
ultrasound alone. Moreover, ultrasound not
always allows the distinction between a benign
and a malignant adnexal tumor.
Most of sonographically indeterminate
adnexal masses turn out to be common benign
entities that can be readily diagnosed by magnetic
resonance imaging. The clinical impact
of predicting the likelihood of malignancy is
crucial for proper patient management.
The first part of this chapter will cover the
technical magnetic resonance imaging aspects
of ovarian lesions characterization as well as the
imaging features that allow the radiologist to
correctly define the anatomic origin of a pelvic
mass. Next, the authors will go through different
benign ovarian entities and through the different
histologic types of benign ovarian tumors.
Finally the functional ovarian tumors and the
ovarian tumors in children, adolescents, young
females, and pregnant women will be covered.info:eu-repo/semantics/publishedVersio
In Vitro and In Vivo Studies Identify Important Features of Dengue Virus pr-E Protein Interactions
Flaviviruses bud into the endoplasmic reticulum and are transported through the secretory pathway, where the mildly acidic environment triggers particle rearrangement and allows furin processing of the prM protein to pr and M. The peripheral pr peptide remains bound to virus at low pH and inhibits virus-membrane interaction. Upon exocytosis, the release of pr at neutral pH completes virus maturation to an infectious particle. Together this evidence suggests that pr may shield the flavivirus fusion protein E from the low pH environment of the exocytic pathway. Here we developed an in vitro system to reconstitute the interaction of dengue virus (DENV) pr with soluble truncated E proteins. At low pH recombinant pr bound to both monomeric and dimeric forms of E and blocked their membrane insertion. Exogenous pr interacted with mature infectious DENV and specifically inhibited virus fusion and infection. Alanine substitution of E H244, a highly conserved histidine residue in the pr-E interface, blocked pr-E interaction and reduced release of DENV virus-like particles. Folding, membrane insertion and trimerization of the H244A mutant E protein were preserved, and particle release could be partially rescued by neutralization of the low pH of the secretory pathway. Thus, pr acts to silence flavivirus fusion activity during virus secretion, and this function can be separated from the chaperone activity of prM. The sequence conservation of key residues involved in the flavivirus pr-E interaction suggests that this protein-protein interface may be a useful target for broad-spectrum inhibitors
- …
