1,132 research outputs found
Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci
The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
Coverage, Continuity and Visual Cortical Architecture
The primary visual cortex of many mammals contains a continuous
representation of visual space, with a roughly repetitive aperiodic map of
orientation preferences superimposed. It was recently found that orientation
preference maps (OPMs) obey statistical laws which are apparently invariant
among species widely separated in eutherian evolution. Here, we examine whether
one of the most prominent models for the optimization of cortical maps, the
elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and
map continuity. While this model has been used in numerous studies, no
analytical results about the precise layout of the predicted OPMs have been
obtained so far. We present a mathematical approach to analytically calculate
the cortical representations predicted by the EN model for the joint mapping of
stimulus position and orientation. We find that in all previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search
through the EN parameter space identifies a novel regime of aperiodic OPMs with
pinwheel densities lower than found in experiments. In an extreme limit,
aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong nonlocal interactions rather
than from a coverage-continuity-compromise. Our results demonstrate that
optimization models for stimulus representations dominated by nonlocal
suppressive interactions are in principle capable of correctly predicting the
common OPM design. They question that visual cortical feature representations
can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
Acceptability and feasibility of peer assisted supervision and support for intervention practitioners: a Q-methodology evaluation
Evidence-based interventions often include quality improvement methods to support fidelity and improve client outcomes. Clinical supervision is promoted as an effective way of developing practitioner confidence and competence in delivery; however, supervision is often inconsistent and embedded in hierarchical line management structures that may limit the opportunity for reflective learning. The Peer Assisted Supervision and Support (PASS) supervision model uses peer relationships to promote the self-regulatory capacity of practitioners to improve intervention delivery. The aim of the present study was to assess the acceptability and feasibility of PASS amongst parenting intervention practitioners. A Q-methodology approach was used to generate data and 30 practitioners volunteered to participate in the study. Data were analyzed and interpreted using standard Q-methodology procedures and by-person factor analysis yielded three factors. There was consensus that PASS was acceptable. Participants shared the view that PASS facilitated an environment of support where negative aspects of interpersonal relationships that might develop in supervision were not evident. Two factors represented the viewpoint that PASS was also a feasible model of supervision. However, the third factor was comprised of practitioners who reported that PASS could be time consuming and difficult to fit into existing work demands. There were differences across the three factors in the extent to which practitioners considered PASS impacted on their intervention delivery. The findings highlight the importance of organizational mechanisms that support practitioner engagement in supervision
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
The shear viscosity of carbon fibre suspension and its application for fibre length measurement
The viscosity of short carbon fibre suspensions in glycerol aqueous solution was measured using a bespoke vane-in-cup viscometer, where the carbon fibre has an aspect ratio from 450 to 2209. In the semi-concentrated regime, nL3 ranging from 20 to 4400, the suspensions demonstrated strong shear-thinning characteristics particularly at higher concentrations. The shear-thinning characteristic is strongly related to the crowding factor proposed by Kerekes, indicating that non-hydrodynamic interactions occur in the suspensions. The influence of fibre bending on viscosity emerges when the bending ratio is lower than 0.0028. An empirical model based on transient network formation and rupture was proposed and used to correlate the relative viscosity with fibre concentration nL3 and shear rate. Based on the model, a viscosity method is established to analyse the fibre length by measuring the viscosity of the fibre suspension using a bespoke vane-in-cup viscometer
A model of online protection to reduce children's online risk exposure: empirical evidence from Asia
Children are surrounded by a variety of digital media and are exposed to potential risks that come with such easy accessibility. Learning how to be safe online is an important consideration for both children and their caregivers. The present study proposes an integrated model of online safety based on constructs from protection motivation theory and the health belief model, namely perceived severity of (and susceptibility to) risk, online self-efficacy, online privacy concern, and digital literacy. The study comprised a survey conducted among 420 schoolchildren aged 9–16 years. Using partial least squares-structural equation modelling, the results illustrated the presence of a negative effect of ‘perceived severity of online risk’ toward online risks, whereas the effect of ‘digital literacy’ was found to be positive. Children whose perception of online risks was more severe were less exposed to online risks if they had higher ‘online privacy concerns’ than the children with higher ‘digital literacy’ who are more exposed to online risk. Results of the study show that engaging in safe online behaviour requires children to have a high perception regarding severity of online risks as well as knowledge of online privacy concerns. Online risks and opportunities occur in parallel. Consequently, the factors that increase or decrease risk may also increase or decrease the benefits
Identifying practical indicators of biodiversity for stand-level management of plantation forests
The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae)
[Abstract] The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at −25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinan
The Scottish Early Rheumatoid Arthritis (SERA) Study:an inception cohort and biobank
Background:
The Scottish Early Rheumatoid Arthritis (SERA) study is an inception cohort of rheumatoid (RA) and undifferentiated arthritis (UA) patients that aims to provide a contemporary description of phenotype and outcome and facilitate discovery of phenotypic and prognostic biomarkers
Methods:
Demographic and clinical outcome data are collected from newly diagnosed RA/UA patients every 6 months from around Scotland. Health service utilization data is acquired from Information Services Division, NHS National Services Scotland. Plain radiographs of hands and feet are collected at baseline and 12 months. Additional samples of whole blood, plasma, serum and filtered urine are collected at baseline, 6 and 12 months
Results:
Results are available for 1073 patients; at baseline, 76 % were classified as RA and 24 % as UA. Median time from onset to first review was 163 days (IQR97-323). Methotrexate was first-line DMARD for 75 % patients. Disease activity, functional ability and health-related quality of life improved significantly between baseline and 24 months, however the proportion in any employment fell (51 to 38 %, p = 0.0005). 24 % patients reported symptoms of anxiety and/or depression at baseline. 35/391 (9 %) patients exhibited rapid radiographic progression after 12 months. The SERA Biobank has accrued 60,612 samples
Conclusions:
In routine care, newly diagnosed RA/UA patients experience significant improvements in disease activity, functional ability and health-related quality of life but have high rates of psychiatric symptoms and declining employment rates. The co-existence of a multi-domain description of phenotype and a comprehensive biobank will facilitate multi-platform translational research to identify predictive markers of phenotype and prognosis
- …
