1,276 research outputs found
Allozyme and mitochondrial DNA variability within the New Zealand damselfly genera Xanthocnemis, Austrolestes, and Ischnura (Odonata)
We collected larval damselflies from 17 sites in the North, South and Chatham Islands, and tested the hypotheses that: (1) genetic markers (e.g., allozymes, mtDNA) would successfully ¬discriminate taxa; and (2) the dispersal capabilities of adult damselflies would limit differentiation among locations. Four species from three genera were identified based on available taxonomic keys. Using 11 allozyme loci and the mitochondrial cytochrome c-oxidase subunit I (COI) gene, we confirmed that all taxa were clearly discernible. We found evidence for low to moderate differentiation among locations based on allozyme (mean FST = 0.09) and sequence (COI) divergence (<0.034). No obvious patterns with respect to geographic location were detected, although slight differences were found between New Zealand’s main islands (North Island, South Island) and the Chatham Islands for A. colensonis (sequence divergence 0.030–0.034). We also found limited intraspecific genetic variability based on allozyme data (Hexp < 0.06 in all cases). We conclude that levels of gene flow/dispersal on the main islands may have been sufficient to maintain the observed homogeneous population structure, and that genetic techniques, particularly the COI gene locus, will be a useful aid in future identifications
New genus in the holothurian family synaptidae, with a new species from Tasmania
Late in 1964, one of us (D.L.P.) received from
Professor V. V. Hickman in Tasmania a specimen of
a new synaptid holothurian from that island. Professor
Hickman had prepared permanent mounts of
representative calcareous deposits of the specimen,
and very kindly offered all of his material of the
species to D.L.P. for inclusion in a report on the
apodous holothurians of the Australian Museum
which was then in preparation. Early in 1966
F.W.E.R. received from the Oslo Museum six specimens
and a fragment of the same species. Quite by
accident we discovered that we were in the process
of describing this new species independently. This
joint contribution comprises the sum total of our
investigations
Super-resolution far-field ghost imaging via compressive sampling
Much more image details can be resolved by improving the system's imaging
resolution and enhancing the resolution beyond the system's Rayleigh
diffraction limit is generally called super-resolution. By combining the sparse
prior property of images with the ghost imaging method, we demonstrated
experimentally that super-resolution imaging can be nonlocally achieved in the
far field even without looking at the object. Physical explanation of
super-resolution ghost imaging via compressive sampling and its potential
applications are also discussed.Comment: 4pages,4figure
Deceptive body movements reverse spatial cueing in soccer
This article has been made available through the Brunel Open Access Publishing Fund.The purpose of the experiments was to analyse the spatial cueing effects of the movements of soccer players executing normal and deceptive (step-over) turns with the ball. Stimuli comprised normal resolution or point-light video clips of soccer players dribbling a football towards the observer then turning right or left with the ball. Clips were curtailed before or on the turn (-160, -80, 0 or +80 ms) to examine the time course of direction prediction and spatial cueing effects. Participants were divided into higher-skilled (HS) and lower-skilled (LS) groups according to soccer experience. In experiment 1, accuracy on full video clips was higher than on point-light but results followed the same overall pattern. Both HS and LS groups correctly identified direction on normal moves at all occlusion levels. For deceptive moves, LS participants were significantly worse than chance and HS participants were somewhat more accurate but nevertheless substantially impaired. In experiment 2, point-light clips were used to cue a lateral target. HS and LS groups showed faster reaction times to targets that were congruent with the direction of normal turns, and to targets incongruent with the direction of deceptive turns. The reversed cueing by deceptive moves coincided with earlier kinematic events than cueing by normal moves. It is concluded that the body kinematics of soccer players generate spatial cueing effects when viewed from an opponent's perspective. This could create a reaction time advantage when anticipating the direction of a normal move. A deceptive move is designed to turn this cueing advantage into a disadvantage. Acting on the basis of advance information, the presence of deceptive moves primes responses in the wrong direction, which may be only partly mitigated by delaying a response until veridical cues emerge
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Risks to Birds Traded for African Traditional Medicine: A Quantitative Assessment
Few regional or continent-wide assessments of bird use for traditional medicine have been attempted anywhere in the world. Africa has the highest known diversity of bird species used for this purpose. This study assesses the vulnerability of 354 bird species used for traditional medicine in 25 African countries, from 205 genera, 70 families, and 25 orders. The orders most represented were Passeriformes (107 species), Falconiformes (45 species), and Coraciiformes (24 species), and the families Accipitridae (37 species), Ardeidae (15 species), and Bucerotidae (12 species). The Barn owl (Tyto alba) was the most widely sold species (seven countries). The similarity of avifaunal orders traded is high (analogous to ‘‘morphospecies’’, and using Sørensen’s index), which suggests opportunities for a common understanding of cultural factors driving demand. The highest similarity was between bird orders sold in markets of Benin vs. Burkina Faso (90%), but even bird orders sold in two geographically separated countries (Benin vs. South Africa and Nigeria vs. South Africa) were 87% and 81% similar, respectively. Rabinowitz’s ‘‘7 forms of rarity’’ model, used to group species according to commonness or rarity, indicated that 24% of traded bird species are very common, locally abundant in several habitats, and occur over a large geographical area, but 10% are rare, occur in low numbers in specific habitats, and over a small geographical area. The order with the highest proportion of rare species was the Musophagiformes. An analysis of species mass (as a proxy for size) indicated that large and/or conspicuous species tend to be targeted by harvesters for the traditional medicine trade. Furthermore, based on cluster analyses for species groups of similar risk, vultures, hornbills, and other large avifauna, such as bustards, are most threatened by selective harvesting and should be prioritised for conservation action.University of the Witwatersrand SPARC Prestigious and URC Postdoctoral Fellowships;
National Research Foundatio
Recommended from our members
A qualitative study of women's experiences of communication in antenatal care: Identifying areas for action
To identify key features of communication across antenatal (prenatal) care that are evaluated positively or negatively by service users. Focus groups and semi-structured interviews were used to explore communication experiences of thirty pregnant women from diverse social and ethnic backgrounds affiliated to a large London hospital. Data were analysed using thematic analysis. Women reported a wide diversity of experiences. From the users’ perspective, constructive communication on the part of health care providers was characterised by an empathic conversational style, openness to questions, allowing sufficient time to talk through any concerns, and pro-active contact by providers (e.g. text message appointment reminders). These features created reassurance, facilitated information exchange, improved appointment attendance and fostered tolerance in stressful situations. Salient features of poor communication were a lack of information provision, especially about the overal
Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.150
- …
