76 research outputs found
A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.
Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster
The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster.
Three iron-sulfur proteins–HydE, HydF, and HydG–play a key role in the synthesis of the [2Fe]H component of the catalytic H-cluster of FeFe hydrogenase. The radical S-adenosyl-l-methionine enzyme HydG lyses free tyrosine to produce p-cresol and the CO and CN− ligands of the [2Fe]H cluster. Here, we applied stopped-flow Fourier transform infrared and electron-nuclear double resonance spectroscopies to probe the formation of HydG-bound Fe-containing species bearing CO and CN− ligands with spectroscopic signatures that evolve on the 1- to 1000-second time scale. Through study of the 13C, 15N, and 57Fe isotopologs of these intermediates and products, we identify the final HydG-bound species as an organometallic Fe(CO)2(CN) synthon that is ultimately transferred to apohydrogenase to form the [2Fe]H component of the H-cluster
Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems
Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization
Lessons from a one-year hospital-based surveillance of acute respiratory infections in Berlin- comparing case definitions to monitor influenza
<p>Abstract</p> <p>Background</p> <p>Surveillance of severe acute respiratory infections (SARI) in sentinel hospitals is recommended to estimate the burden of severe influenza-cases. Therefore, we monitored patients admitted with respiratory infections (RI) in 9 Berlin hospitals from 7.12.2009 to 12.12.2010 according to different case definitions (CD) and determined the proportion of cases with influenza A(H1N1)pdm09 (pH1N1). We compared the sensitivity and specificity of CD for capturing pandemic pH1N1 cases.</p> <p>Methods</p> <p>We established an RI-surveillance restricted to adults aged ≤ 65 years within the framework of a pH1N1 vaccine effectiveness study, which required active identification of RI-cases. The hospital information-system was screened daily for newly admitted RI-patients. Nasopharyngeal swabs from consenting patients were tested by PCR for influenza-virus subtypes. Four clinical CD were compared in terms of capturing pH1N1-positives among hospitalized RI-patients by applying sensitivity and specificity analyses. The broadest case definition (CD1) was used for inclusion of RI-cases; the narrowest case definition (CD4) was identical to the SARI case definition recommended by ECDC/WHO.</p> <p>Results</p> <p>Over the study period, we identified 1,025 RI-cases, of which 283 (28%) met the ECDC/WHO SARI case definition. The percentage of SARI-cases among internal medicine admissions decreased from 3.2% (calendar-week 50-2009) to 0.2% (week 25-2010). Of 354 patients tested by PCR, 20 (6%) were pH1N1-positive. Two case definitions narrower than CD1 but -in contrast to SARI- not requiring shortness of breath yielded the largest areas under the Receiver-Operator-Curve. Heterogeneity of proportions of patients admitted with RI between hospitals was significant.</p> <p>Conclusions</p> <p>Comprehensive surveillance of RI cases was feasible in a network of community hospitals. In most settings, several hospitals should be included to ensure representativeness. Although misclassification resulting from failure to obtain symptoms in the hospital information-system cannot be ruled out, a high proportion of hospitalized PCR-positive pH1N1-patients (45%) did not fulfil the SARI case-definition that included shortness of breath or difficulty breathing. Thus, to assess influenza-related disease burden in hospitals, broader, alternative case definitions should be considered.</p
Entrepreneurship and rural family identity:Understanding portfolio development in a family farm business
Solar System Abundances of the Elements
Representative abundances of the chemical elements for use as a solar
abundance standard in astronomical and planetary studies are summarized.
Updated abundance tables for solar system abundances based on meteorites and
photospheric measurements are presented.Comment: 46 pages; 5 figures; 8 tables; In: Principles and Perspectives in
Cosmochemistry.Lecture Notes of the Kodai School on 'Synthesis of Elements in
Stars' held at Kodaikanal Observatory, India, April 29 - May 13, 2008 (Aruna
Goswami and B. Eswar Reddy eds.) Astrophysics and Space Science Proceedings,
Springer-Verlag Berlin Heidelberg, 2010, p. 379-417 (ISBN 978-3-642-10351-3),
201
Gaia data release 1, the photometric data
CONTEXT. This paper presents an overview of the photometric data that are part of the first Gaia data release. AIMS. The principles of the processing and the main characteristics of the Gaia photometric data are presented. METHODS. The calibration strategy is outlined briefly and the main properties of the resulting photometry are presented. RESULTS. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases
Origin of the Biologically Important Elements
The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe--hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets
Quantum-mechanical equilibrium isotopic fractionation correction to radiocarbon dating: a theory study
This paper relates the quantum–mechanical equilibrium isotopic fractionation correction to the radiocarbon dating method by Eq. 9, and also shows the significant influence of temperature on the method. It is suggested that the correction is a function of the frequencies and temperature of a specific sample and these two variables can be evaluated theoretically by the ab initio quantum calculations and experimentally by analyzing the clumped-isotope ratios in it, respectively. This paper also suggests that the (14)C/(12)C ratio in the atmosphere in geological time can be calculated by Eq. 10
- …
