67 research outputs found

    Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses

    Get PDF
    Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to similar to 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.open4

    Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species

    Get PDF
    The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa – Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae) – by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant ‘hot-spot’ for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general

    X-ray imaging of the dynamic magnetic vortex core deformation

    Get PDF
    Magnetic platelets with a vortex configuration are attracting considerable attention. The discovery that excitation with small in-plane magnetic fields or spin polarised currents can switch the polarisation of the vortex core did not only open the possibility of using such systems in magnetic memories, but also initiated the fundamental investigation of the core switching mechanism itself. Micromagnetic models predict that the switching is mediated by a vortex-antivortex pair, nucleated in a dynamically induced vortex core deformation. In the same theoretical framework, a critical core velocity is predicted, above which switching occurs. Although these models are extensively studied and generally accepted, experimental support has been lacking until now. In this work, we have used high-resolution time-resolved X-ray microscopy to study the detailed dynamics in vortex structures. We could reveal the dynamic vortex core deformation preceding the core switching. Also, the threshold velocity could be measured, giving quantitative comparison with micromagnetic models

    How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis

    Get PDF
    The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level

    Research achievements in plant resistance to insect pests of cool season food legumes

    Get PDF
    Plant resistance to at least 17 field and storage insect pests of cool season food legumes has been identified. For the most part, this resistance was located in the primary gene pools of grain legumes via conventional laboratory, greenhouse, and field screening methods. The use of analytical techniques (i.e., capillary gas chromatography) to characterize plant chemicals that mediate the host selection behavior of pest insects offers promise as a new, more rapid way to differentiate between insect-resistant and susceptible plant material. Examples of research achievements in mechanisms of resistance and host-plant resistance within the context of integrated control programs are discussed. Accelerating the development and subsequent releases of insect-resistant cultivars to pulse farmers requires more involvement from interdisciplinary teams of plant breeders, entomologists, plant pathologists, plant chemists, molecular biologists, and other scientist

    Ibuprofen results in alterations of human fetal testis development

    Get PDF
    International audienceAmong pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7-17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8-9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10-12 GW, or in second trimester xenografted testes (14-17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow 'early window' of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology

    Chickpea

    Get PDF
    The narrow genetic base of cultivated chickpea warrants systematic collection, documentation and evaluation of chickpea germplasm and particularly wild Cicer species for effective and efficient use in chickpea breeding programmes. Limiting factors to crop production, possible solutions and ways to overcome them, importance of wild relatives and barriers to alien gene introgression and strategies to overcome them and traits for base broadening have been discussed. It has been clearly demonstrated that resistance to major biotic and abiotic stresses can be successfully introgressed from the primary gene pool comprising progenitor species. However, many desirable traits including high degree of resistance to multiple stresses that are present in the species belonging to secondary and tertiary gene pools can also be introgressed by using special techniques to overcome pre- and post-fertilization barriers. Besides resistance to various biotic and abiotic stresses, the yield QTLs have also been introgressed from wild Cicer species to cultivated varieties. Status and importance of molecular markers, genome mapping and genomic tools for chickpea improvement are elaborated. Because of major genes for various biotic and abiotic stresses, the transfer of agronomically important traits into elite cultivars has been made easy and practical through marker-assisted selection and marker-assisted backcross. The usefulness of molecular markers such as SSR and SNP for the construction of high-density genetic maps of chickpea and for the identification of genes/QTLs for stress resistance, quality and yield contributing traits has also been discussed
    corecore