1,988 research outputs found
Foot Bone in Vivo: Its Center of Mass and Centroid of Shape
This paper studies foot bone geometrical shape and its mass distribution and
establishes an assessment method of bone strength. Using spiral CT scanning,
with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot
bones in vivo and investigate the relationship between the bone's external
shape and internal structure. This analysis is explored on the bases of the
bone's center of mass and its centroid of shape. We observe the phenomenon of
superposition of center of mass and centroid of shape fairly precisely,
indicating a possible appearance of biomechanical organism. We investigate two
aspects of the geometrical shape, (i) distance between compact bone's centroid
of shape and that of the bone and (ii) the mean radius of the same density bone
issue relative to the bone's centroid of shape. These quantities are used to
interpret the influence of different physical exercises imposed on bone
strength, thereby contributing to an alternate assessment technique to bone
strength.Comment: 9 pages, 4 figure
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells
CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Unicentric mixed variant castleman disease associated with intrabronchial plasmacytoma.
Castleman disease (CD), described as a heterogeneous lymphoproliferative disorder, can be divided into different subtypes according to clinical appearance (unicentric and multicentric form) and histopathological features (hyaline vascular, plasma cell, mixed type, human herpesvirus 8-associated and multicentric not otherwise specified). Unicentric CD is known to be usually of the hyaline vascular variant, plasma cell and mixed type of this form are quite uncommon. Malignancies are mainly associated with the multicentric form. We report a rare case of unicentric mixed variant CD evolving into intrabronchial, extramedullary plasmacytoma.Intrabronchial mass with consequential obstruction of the left main bronchus, left lung atelectasis and mediastinal lymphadenomegaly was detected by chest CT in our patient suffering from cough and hemoptysis. Pulmonectomy was performed, histopathological and immunhistochemical analysis of lymph nodes revealed mixed type of CD with interfollicular monotypic plasma cell proliferation. The intrabronchial mass consisted of monotypic plasma cells confirming plasmacytoma. Systemic involvement was not confirmed by further tests.Although malignancies more often present in multicentric CD that usually belongs to the plasma cell subtype, this case confirms the neoplastic potential of the rarest, unicentric mixed variant of CD.Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2872096831190851
Abacavir, zidovudine, or stavudine as paediatric tablets for African HIV-infected children (CHAPAS-3): an open-label, parallel-group, randomised controlled trial
BACKGROUND: WHO 2013 guidelines recommend universal treatment for HIV-infected children younger than 5 years. No paediatric trials have compared nucleoside reverse-transcriptase inhibitors (NRTIs) in first-line antiretroviral therapy (ART) in Africa, where most HIV-infected children live. We aimed to compare stavudine, zidovudine, or abacavir as dual or triple fixed-dose-combination paediatric tablets with lamivudine and nevirapine or efavirenz. METHODS: In this open-label, parallel-group, randomised trial (CHAPAS-3), we enrolled children from one centre in Zambia and three in Uganda who were previously untreated (ART naive) or on stavudine for more than 2 years with viral load less than 50 copies per mL (ART experienced). Computer-generated randomisation tables were incorporated securely within the database. The primary endpoint was grade 2-4 clinical or grade 3/4 laboratory adverse events. Analysis was intention to treat. This trial is registered with the ISRCTN Registry number, 69078957. FINDINGS: Between Nov 8, 2010, and Dec 28, 2011, 480 children were randomised: 156 to stavudine, 159 to zidovudine, and 165 to abacavir. After two were excluded due to randomisation error, 156 children were analysed in the stavudine group, 158 in the zidovudine group, and 164 in the abacavir group, and followed for median 2·3 years (5% lost to follow-up). 365 (76%) were ART naive (median age 2·6 years vs 6·2 years in ART experienced). 917 grade 2-4 clinical or grade 3/4 laboratory adverse events (835 clinical [634 grade 2]; 40 laboratory) occurred in 104 (67%) children on stavudine, 103 (65%) on zidovudine, and 105 (64%), on abacavir (p=0·63; zidovudine vs stavudine: hazard ratio [HR] 0·99 [95% CI 0·75-1·29]; abacavir vs stavudine: HR 0·88 [0·67-1·15]). At 48 weeks, 98 (85%), 81 (80%) and 95 (81%) ART-naive children in the stavudine, zidovudine, and abacavir groups, respectively, had viral load less than 400 copies per mL (p=0·58); most ART-experienced children maintained suppression (p=1·00). INTERPRETATION: All NRTIs had low toxicity and good clinical, immunological, and virological responses. Clinical and subclinical lipodystrophy was not noted in those younger than 5 years and anaemia was no more frequent with zidovudine than with the other drugs. Absence of hypersensitivity reactions, superior resistance profile and once-daily dosing favours abacavir for African children, supporting WHO 2013 guidelines. FUNDING: European Developing Countries Clinical Trials Partnership
Distributions of epistasis in microbes fit predictions from a fitness landscape model.
How do the fitness effects of several mutations combine? Despite its simplicity, this question is central to the understanding of multilocus evolution. Epistasis (the interaction between alleles at different loci), especially epistasis for fitness traits such as reproduction and survival, influences evolutionary predictions "almost whenever multilocus genetics matters". Yet very few models have sought to predict epistasis, and none has been empirically tested. Here we show that the distribution of epistasis can be predicted from the distribution of single mutation effects, based on a simple fitness landscape model. We show that this prediction closely matches the empirical measures of epistasis that have been obtained for Escherichia coli and the RNA virus vesicular stomatitis virus. Our results suggest that a simple fitness landscape model may be sufficient to quantitatively capture the complex nature of gene interactions. This model may offer a simple and widely applicable alternative to complex metabolic network models, in particular for making evolutionary predictions
Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk
Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency
Portuguese Foundation for Science and Technology
CRESC ALGARVE 2020
European Union (EU)
303745
Maratona da Saude Award
DL 57/2016/CP1361/CT0042
SFRH/BPD/99502/2014
CBMR-UID/BIM/04773/2013
POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio
- …
