340 research outputs found
Quantum correlations from local amplitudes and the resolution of the Einstein-Podolsky-Rosen nonlocality puzzle
The Einstein-Podolsky-Rosen nonlocality puzzle has been recognized as one of
the most important unresolved issues in the foundational aspects of quantum
mechanics. We show that the problem is resolved if the quantum correlations are
calculated directly from local quantities which preserve the phase information
in the quantum system. We assume strict locality for the probability amplitudes
instead of local realism for the outcomes, and calculate an amplitude
correlation function.Then the experimentally observed correlation of outcomes
is calculated from the square of the amplitude correlation function. Locality
of amplitudes implies that the measurement on one particle does not collapse
the companion particle to a definite state. Apart from resolving the EPR
puzzle, this approach shows that the physical interpretation of apparently
`nonlocal' effects like quantum teleportation and entanglement swapping are
different from what is usually assumed. Bell type measurements do not change
distant states. Yet the correlations are correctly reproduced, when measured,
if complex probability amplitudes are treated as the basic local quantities. As
examples we discuss the quantum correlations of two-particle maximally
entangled states and the three-particle GHZ entangled state.Comment: Std. Latex, 11 pages, 1 table. Prepared for presentation at the
International Conference on Quantum Optics, ICQO'2000, Minsk, Belaru
Implication of the overlap representation for modelling generalized parton distributions
Based on a field theoretically inspired model of light-cone wave functions,
we derive valence-like generalized parton distributions and their double
distributions from the wave function overlap in the parton number conserved
s-channel. The parton number changing contributions in the t-channel are
restored from duality. In our construction constraints of positivity and
polynomiality are simultaneously satisfied and it also implies a model
dependent relation between generalized parton distributions and transverse
momentum dependent parton distribution functions. The model predicts that the
t-behavior of resulting hadronic amplitudes depends on the Bjorken variable
x_Bj. We also propose an improved ansatz for double distributions that embeds
this property.Comment: 15 pages, 8 eps figure
Experimental delayed-choice entanglement swapping
Motivated by the question, which kind of physical interactions and processes
are needed for the production of quantum entanglement, Peres has put forward
the radical idea of delayed-choice entanglement swapping. There, entanglement
can be "produced a posteriori, after the entangled particles have been measured
and may no longer exist". In this work we report the first realization of
Peres' gedanken experiment. Using four photons, we can actively delay the
choice of measurement-implemented via a high-speed tunable bipartite state
analyzer and a quantum random number generator-on two of the photons into the
time-like future of the registration of the other two photons. This effectively
projects the two already registered photons onto one definite of two mutually
exclusive quantum states in which either the photons are entangled (quantum
correlations) or separable (classical correlations). This can also be viewed as
"quantum steering into the past"
An experimental test of non-local realism
Most working scientists hold fast to the concept of 'realism' - a viewpoint
according to which an external reality exists independent of observation. But
quantum physics has shattered some of our cornerstone beliefs. According to
Bell's theorem, any theory that is based on the joint assumption of realism and
locality (meaning that local events cannot be affected by actions in space-like
separated regions) is at variance with certain quantum predictions. Experiments
with entangled pairs of particles have amply confirmed these quantum
predictions, thus rendering local realistic theories untenable. Maintaining
realism as a fundamental concept would therefore necessitate the introduction
of 'spooky' actions that defy locality. Here we show by both theory and
experiment that a broad and rather reasonable class of such non-local realistic
theories is incompatible with experimentally observable quantum correlations.
In the experiment, we measure previously untested correlations between two
entangled photons, and show that these correlations violate an inequality
proposed by Leggett for non-local realistic theories. Our result suggests that
giving up the concept of locality is not sufficient to be consistent with
quantum experiments, unless certain intuitive features of realism are
abandoned.Comment: Minor corrections to the manuscript, the final inequality and all its
conclusions do not change; description of corrections (Corrigendum) added as
new Appendix III; Appendix II replaced by a shorter derivatio
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
This article is meant as a summary and introduction to the ideas of effective
field theory as applied to gravitational systems.
Contents:
1. Introduction
2. Effective Field Theories
3. Low-Energy Quantum Gravity
4. Explicit Quantum Calculations
5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living
Reviews of Relativit
Von Bezold assimilation effect reverses in stereoscopic conditions
Lightness contrast and lightness assimilation are opposite phenomena: in contrast,
grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in
assimilation, the opposite occurs. The question is: which visual process favours the occurrence
of one phenomenon over the other? Researchers provided three answers to this question. The
first asserts that both phenomena are caused by peripheral processes; the second attributes their
occurrence to central processes; and the third claims that contrast involves central processes,
whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT
system equipped with goggles for stereo vision was run. Observers were asked to evaluate the
lightness of a grey target, and two variables were systematically manipulated: (i) the apparent
distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept
constant throughout, so that the peripheral processes remained the same. The results show that
the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we
conclude that central mechanisms are involved in both lightness contrast and lightness assimilation
Radiation from a D-dimensional collision of shock waves: first order perturbation theory
We study the spacetime obtained by superimposing two equal Aichelburg-Sexl
shock waves in D dimensions traveling, head-on, in opposite directions.
Considering the collision in a boosted frame, one shock becomes stronger than
the other, and a perturbative framework to compute the metric in the future of
the collision is setup. The geometry is given, in first order perturbation
theory, as an integral solution, in terms of initial data on the null surface
where the strong shock has support. We then extract the radiation emitted in
the collision by using a D-dimensional generalisation of the Landau-Lifschitz
pseudo-tensor and compute the percentage of the initial centre of mass energy
epsilon emitted as gravitational waves. In D=4 we find epsilon=25.0%, in
agreement with the result of D'Eath and Payne. As D increases, this percentage
increases monotonically, reaching 40.0% in D=10. Our result is always within
the bound obtained from apparent horizons by Penrose, in D=4, yielding 29.3%,
and Eardley and Giddings, in D> 4, which also increases monotonically with
dimension, reaching 41.2% in D=10. We also present the wave forms and provide a
physical interpretation for the observed peaks, in terms of the null generators
of the shocks.Comment: 27 pages, 11 figures; v2 some corrections, including D dependent
factor in epsilon; matches version accepted in JHE
Experimental GHZ Entanglement beyond Qubits
The Greenberger-Horne-Zeilinger (GHZ) argument provides an all-or-nothing
contradiction between quantum mechanics and local-realistic theories. In its
original formulation, GHZ investigated three and four particles entangled in
two dimensions only. Very recently, higher dimensional contradictions
especially in three dimensions and three particles have been discovered but it
has remained unclear how to produce such states. In this article we
experimentally show how to generate a three-dimensional GHZ state from
two-photon orbital-angular-momentum entanglement. The first suggestion for a
setup which generates three-dimensional GHZ entanglement from these entangled
pairs came from using the computer algorithm Melvin. The procedure employs
novel concepts significantly beyond the qubit case. Our experiment opens up the
possibility of a truly high-dimensional test of the GHZ-contradiction which,
interestingly, employs non-Hermitian operators.Comment: 6+6 pages, 8 figure
A meta-analysis and critical review of prospective memory in autism spectrum disorder
Prospective memory (PM) is the ability to remember to carry out a planned intention at an appropriate moment in the future. Research on PM in ASD has produced mixed results. We aimed to establish the extent to which two types of PM (event-based/time-based) are impaired in ASD. In part 1, a meta-analysis of all existing studies indicates a large impairment of time-based, but only a small impairment of event-based, PM in ASD. In Part 2, a critical review concludes that time-based PM appears diminished in ASD, in line with the meta-analysis, but that caution should be taken when interpreting event-based PM findings, given potential methodological limitations of several studies. Clinical implications and directions for future research are discussed
Observation of eight-photon entanglement
Using ultra-bright sources of pure-state entangled photons from parametric
down conversion, an eight-photon interferometer and post-selection detection,
we demonstrate the ability to experimentally manipulate eight individual
photons and report the creation of an eight-photon Schr\"odinger cat state with
an observed fidelity of .Comment: 6 pages, 4 figure
- …
