84 research outputs found
Drop-out rate from the liver transplant waiting list due to HCC progression in HCV-infected patients treated with direct acting antivirals.
BACKGROUND & AIM: concerns about an increased hepatocellular carcinoma (HCC) recurrence rate following directly acting antiviral (DAA) therapy in cirrhotic patients with a prior complete oncological response have been raised. Data regarding the impact of HCV-treatment with DAAs on waiting list drop-out rates in patients with active HCC and HCV-related cirrhosis awaiting liver transplantation (LT) are lacking.
MATERIALS AND METHODS: HCV-HCC patients listed for LT between January 2015 and May 2016 at Padua Liver Transplant Centre were considered eligible for the study. After enrollment patients were divided into 2 groups, depending on whether they underwent DAAs treatment while awaiting LT or not. For each patient clinical, serological and virological data were collected. HCC characteristics were radiologically evaluated at baseline and during follow-up (FU). For transplanted patients, pathological assessment of the explants was performed and recurrence-rates were calculated.
RESULTS: twenty-three patients treated with DAAs and 23 controls were enrolled. HCC characteristics at time of LT-listing were comparable between the 2 groups. Median FU was 10 and 7 months, respectively, during which 2/23 (8.7%) and 1/23 (4.3%) drop-out events due to HCC-progression were registered (p = 0.9). No significant differences in terms of radiological progression were highlighted (p = 0.16). Nine out of 23 cases (39%) and 14/23 (61%) controls underwent LT, and histopathological analysis showed no differences in terms of median number and total tumor volume of HCC nodules, tumor differentiation or microvascular invasion. During post-LT FU, 1/8 DAAs treated patient (12,5%) and 1/12 control (8,3%) experienced HCC recurrence (p = 0.6).
CONCLUSIONS: Viral eradication does not seem to be associated with an increased risk of drop-out due to neoplastic progression in HCV-HCC patients awaiting LT
Selective Hyper-responsiveness of the Interferon System in Major Depressive Disorders and Depression Induced by Interferon Therapy
Though an important percentage of patients with chronic hepatitis C virus (HCV) undergoing interferon (IFN) therapy develop depressive symptoms, the role of the IFN system in the pathogenesis of depressive disorders is not well understood.50 patients with HCV infection were treated with standard combination therapy (pegylated IFN-α2a/ribavirin). IFN-induced gene expression was analyzed to identify genes which are differentially regulated in patients with or without IFN-induced depression. For validation, PBMC from 22 psychiatric patients with a severe depressive episode (SDE) and 11 controls were cultivated in vitro with pegylated IFN-α2a and gene expression was analyzed.IFN-induced depression in HCV patients was associated with selective upregulation of 15 genes, including 6 genes that were previously described to be relevant for major depressive disorders or neuronal development. In addition, increased endogenous IFN-production and selective hyper-responsiveness of these genes to IFN stimulation were observed in SDE patients.Our data suggest that selective hyper-responsiveness to exogenous (IFN therapy) or endogenous (depressive disorders) type I IFNs may lead to the development of depressive symptoms. These data could lead to the discovery of novel therapeutic approaches to treat IFN-induced and major depressive disorders
Hepatitis C virus eradication improves immediate and delayed episodic memory in patients treated with interferon and ribavirin
The relation between plasma tyrosine concentration and fatigue in primary biliary cirrhosis and primary sclerosing cholangitis
BACKGROUND: In primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) fatigue is a major clinical problem. Abnormal amino acid (AA) patterns have been implicated in the development of fatigue in several non-hepatological conditions but for PBC and PSC no data are available. This study aimed to identify abnormalities in AA patterns and to define their relation with fatigue. METHODS: Plasma concentrations of tyrosine, tryptophan, phenylalanine, valine, leucine and isoleucine were determined in plasma of patients with PBC (n = 45), PSC (n = 27), chronic hepatitis C (n = 22) and healthy controls (n = 73). Fatigue and quality of life were quantified using the Fisk fatigue severity scale, a visual analogue scale and the SF-36. RESULTS: Valine, isoleucine, leucine were significantly decreased in PBC and PSC. Tyrosine and phenylalanine were increased (p < 0.0002) and tryptophan decreased (p < 0.0001) in PBC. In PBC, but not in PSC, a significant inverse relation between tyrosine concentrations and fatigue and quality of life was found. Patients without fatigue and with good quality of life had increased tyrosine concentrations compared to fatigued patients. Multivariate analysis indicated that this relation was independent from disease activity or severity or presence of cirrhosis. CONCLUSION: In patients with PBC and PSC, marked abnormalities in plasma AA patterns occur. Normal tyrosine concentrations, compared to increased concentrations, may be associated with fatigue and diminished quality of life
Does Hepatitis C Virus Infection Increase Risk for Stroke? A Population-Based Cohort Study
BACKGROUND: The relationship between hepatitis C virus infection and risk of stroke remains inconsistent. This study evaluates the risk of stroke in association with chronic hepatitis C infection in a longitudinal population-based cohort. METHODS: We identified 4,094 adults newly diagnosed with hepatitis C infection in 2002-2004 from the Taiwan National Health Insurance Research Database. Comparison group consisted of 16,376 adults without hepatitis C infection randomly selected from the same dataset, frequency matched by age and sex. Events of stroke from 2002-2008 were ascertained from medical claims (International Classification of Diseases, Ninth Revision, Clinical Modification, ICD-9-CM, codes 430-438). Multivariate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for potential associated factors including HCV infection, age, sex, low-income status, urbanization, cessation of cigarette smoking, alcohol-related illness, obesity, history of chronic diseases and medication use. FINDINGS: During 96,752 person-years of follow-up, there were 1981 newly diagnosed stroke cases. The HRs of stroke associated with medical conditions such as hypertension, diabetes and heart disease were 1.48 (95% CI 1.33 to 1.65), 1.23 (95% CI 1.11 to 1.36) and 1.17 (95% CI 1.06 to 1.30), respectively, after adjustment for covariates. The cumulative risk of stroke for people with hepatitis C and without hepatitis C infections was 2.5% and 1.9%, respectively (p<0.0001). Compared with people without hepatitis C infection, the adjusted HR of stroke was 1.27 (95% CI 1.14 to 1.41) for people with hepatitis C infection. CONCLUSION: Chronic hepatitis C infection increases stroke risk and should be considered an important and independent risk factor
Role of Sleep Disturbance in Chronic Hepatitis C Infection
Chronic infection with the hepatitis C virus (CHC) is associated with physical and mental symptoms including fatigue and depression that adversely affect quality of life. A related complaint, sleep disturbance, has received little attention in the literature, with the exception of sleep changes noted in cirrhosis and end-stage liver disease. We present an overview of studies indicating sleep problems in patients with CHC, with about 60% to 65% of individuals reporting such complaints. Evidence suggests that impairments in sleep quality exist independent of antiviral therapy with interferon-α and prior to advanced stages of liver disease. Further investigation of sleep disturbance in CHC patients with a mild stage of liver disease may provide important information on disease course as well as allow additional opportunities for patient support
Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity
BACKGROUND: Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection. METHODOLOGY: Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed. PRINCIPAL FINDINGS: HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05). CONCLUSIONS: HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection
Cognitive and Neurologic Rehabilitation Strategies for Central Nervous System HIV Infection
PURPOSE OF REVIEW: Cognitive impairment leading to disability is increasingly seen in people living with human immunodeficiency virus (PLWH). Rehabilitation can alleviate the effects of cognitive impairment upon function. The aim of this paper is to discuss the strategies that have been used in cognitive and neurologic rehabilitation in PLWH. RECENT FINDINGS: Studies examining pharmacological and non-pharmacological strategies were analysed. Medical management of HIV and co-morbidities should be optimised. Non-pharmacological strategies, including nerve stimulation techniques, exercise-based interventions, and paper and computer-based cognitive rehabilitation, have some evidence supporting their use in PLWH either as stand-alone interventions or as part of a multidisciplinary approach. Both pharmacological and non-pharmacological rehabilitation strategies have been used with PLWH. More intervention trials are needed to assess cognitive and neurological rehabilitation strategies and further evaluate their potential benefit in PLWH
Local interleukin-10 production during respiratory syncytial virus bronchiolitis is associated with post-bronchiolitis wheeze
Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro
- …
