2,111 research outputs found
Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition
We investigate and experimentally demonstrate a fast and robust chromatic dispersion (CD) estimation method based on temporal auto-correlation after digital spectrum superposition. The estimation process is fast, because neither tentative CD scanning based on CD compensation nor specific cost function calculations are used. Meanwhile, the proposed CD estimation method is robust against polarization mode dispersion (PMD), amplified spontaneous emission (ASE) noise and fiber nonlinearity. Furthermore, the proposed CD estimation method can be used for various modulation formats and digital pulse shaping technique. Only 4096 samples are necessary for CD estimation of single carrier either 112 Gbps DP-QPSK or 224 Gbps DP-16QAM signal with various pulse shapes. 8192 samples are sufficient for the root-raised-cosine pulse with roll-off factor of 0.1. As low as 50 ps/nm standard deviation together with a worst estimation error of about 160 ps/nm is experimentally obtained for 7 x 112 Gbps DP-QPSK WDM signal after the transmission through 480 km to 9120 km single mode fiber (SMF) loop using different launch powers
Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals
Magnetic doping of semiconductor nanostructures is actively pursued for
applications in magnetic memory and spin-based electronics. Central to these
efforts is a drive to control the interaction strength between carriers
(electrons and holes) and the embedded magnetic atoms. In this respect,
colloidal nanocrystal heterostructures provide great flexibility via
growth-controlled `engineering' of electron and hole wavefunctions within
individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d
exchange interaction between electron-hole excitations (excitons) and
paramagnetic manganese ions using `inverted' core-shell nanocrystals composed
of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe.
Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the
band-edge exciton that, surprisingly, are tunable in both magnitude and sign.
Effective exciton g-factors are controllably tuned from -200 to +30 solely by
increasing the CdSe shell thickness, demonstrating that strong quantum
confinement and wavefunction engineering in heterostructured nanocrystal
materials can be utilized to manipulate carrier-Mn wavefunction overlap and the
sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf
Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy
We present a class of exact analytic and static, spherically symmetric black
hole solutions in the semi-classical Einstein equations with Weyl anomaly. The
solutions have two branches, one is asymptotically flat and the other
asymptotically de Sitter. We study thermodynamic properties of the black hole
solutions and find that there exists a logarithmic correction to the well-known
Bekenstein-Hawking area entropy. The logarithmic term might come from non-local
terms in the effective action of gravity theories. The appearance of the
logarithmic term in the gravity side is quite important in the sense that with
this term one is able to compare black hole entropy up to the subleading order,
in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Recommended from our members
Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols
Since the mid-1990s precipitation trends over eastern China display a dipole pattern, characterized by positive anomalies in the south and negative anomalies in the north, named as the Southern-Flood-Northern-Drought (SFND) pattern. This work investigates the drivers of decadal changes of the East Asian summer monsoon (EASM), and the dynamical mechanisms involved, by using a coupled climate model (specifically an atmospheric general circulation model coupled to an ocean mixed layer model) forced by changes in (1) anthropogenic greenhouse gases (GHG), (2) anthropogenic aerosol (AA) and (3) the combined effects of both GHG and AA (All Forcing) between two periods across the mid-1990s. The model experiment forced by changes in All Forcing shows a dipole pattern of response in precipitation over China that is similar to the observed SFND pattern across the mid-1990s, which suggests that anthropogenic forcing changes played an important role in the observed decadal changes. Furthermore, the experiments with separate forcings indicate that GHG and AA forcing dominate different parts of the SFND pattern. In particular, changes in GHG increase precipitation over southern China, whilst changes in AA dominate in the drought conditions over northern China. Increases in GHG cause increased moisture transport convergence over eastern China, which leads to increased precipitation. The AA forcing changes weaken the EASM, which lead to divergent wind anomalies over northern China and reduced precipitation
On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm
N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides
- …
