1,544 research outputs found
The role of evolutive elastic properties in the performance of a sheet formed spring applied in multimedia car industry
The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.This research was sponsored by:a) Portugal Incentive System for Research and Technological Development. Project in co-promotion no 36265/2013 (Project HMIExcel - 2013-2015), andb) FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix
Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervixBACKGROUND:
Tumour microenvironment is a fundamental aspect of tumour behaviour, modulating important events as cancer cell migration and invasion, as well as angiogenesis and metastisation. Among other microenvironment features, hypoxia and acidity play important roles in this modulation. As the metabolic reprogramming of cancer cells induces extracellular acidity, which in turn induces angiogenesis, and hypoxia induces both the metabolic reprogramming and angiogenesis, the present study aims to evaluate the immunohistochemical expression of a variety of metabolic and vascular markers as common targets of the hypoxic microenvironment in a series of cervical squamous cells carcinoma, as well as using an in vitro 3D culture model.
METHODS:
Immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX was assessed in a series of 28 chronic cervicitis, 34 LSIL, 29 HSIL, 38 cases of squamous cells carcinoma (SCC), as well as in in vitro 3D culture of keratinocytes expressing HPV genes. Furthermore, VEGF family members' expression was assessed in the SCC cases. The expression profiles were associated with patients' clinicopathological parameters.
RESULTS:
We found an increase of MCT4 expression along progression to malignancy in cervical samples. Also, MCT4 was associated with CD147 and CAIX expression. VEGF-A expression was more frequently found in cases without MCT1 expression. Both MCT4 and CD147 were more frequently expressed in younger patients at diagnosis while no associations were found between VEGF family and clinicopathological parameters. Finally, we show evidence for the upregulation of MCT4, as well as CD147 and CAIX, after HPV transfection.
CONCLUSIONS:
The results herein presented point at MCT4 as a promising therapeutic target in squamous cells carcinoma of the uterine cervix. Importantly, we show a possible association between lactate transport and angiogenesis, which should be further explored.CP received a post-doctoral fellowship (SFRH/BPD/69479/2010) and FM-S received a doctoral fellowship (SFRH/BD/87139/2012) from FCT (Portuguese Foundation for Science and Technology). This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER and also by FAPESP 2008/03232-1 to LLV
Numerical and experimental analysis of wrinkling during the cup drawing of an AA5042 aluminium alloy
The recent trend to reduce the thickness of metallic sheets used in forming processes strongly increases the likelihood of the occurrence of wrinkling. Thus, in order to obtain defect-free components, the prediction of this kind of defect becomes extremely important in the tool design and selection of process parameters. In this study, the sheet metal forming process proposed as a benchmark in the Numisheet 2014 conference is selected to analyse the influence of the tool geometry on wrinkling behaviour, as well as the reliability of the
developed numerical model. The side-wall wrinkling during the deep drawing process of a cylindrical cup in AA5042 aluminium alloy is investigated through finite element simulation and experimental measurements. The material plastic anisotropy is modelled with an advanced yield criterion beyond the isotropic (von Mises) material behaviour. The results show that the shape of the wrinkles predicted by the numerical model is strongly affected by the finite element mesh used in the blank discretization. The accurate modelling of the plastic anisotropy of the aluminium alloy yields numerical results that are in good agreement with the experiments, particularly the shape and location of the wrinkles. The predicted punch force evolution is strongly influenced by the friction coefficient used in the model. Moreover, the two punch geometries provide drawn cups with different wrinkle waves, mainly differing in amplitude.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014 and P.D. Barros is grateful to the FCT for the PhD Grant SFRH/BD/98545/2013info:eu-repo/semantics/publishedVersio
Simulations of extensional flow in microrheometric devices
We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels
An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables
An inhomogeneous (1+1)-dimensional model of the quantum gravity is
considered. It is found, that this model corresponds to a string propagating
against some curved background space. The quantization scheme including the
Wheeler-DeWitt equation and the "particle on a sphere" type of the gauge
condition is suggested. In the quantization scheme considered, the "problem of
time" is solved by building of the quasi-Heisenberg operators acting in a space
of solutions of the Wheeler-DeWitt equation and the normalization of the wave
function corresponds to the Klein-Gordon type. To analyze the physical
consequences of the scheme, a (1+1)-dimensional background space is considered
for which a classical solution is found and quantized. The obtained estimations
show the way to solution of the cosmological constant problem, which consists
in compensation of the zero-point oscillations of the matter fields by the
quantum oscillations of the scale factor. Along with such a compensation, a
slow global evolution of a background corresponding to an universe expansion
exists.Comment: 18 page
Holographic GB gravity in arbitrary dimensions
We study the properties of the holographic CFT dual to Gauss-Bonnet gravity
in general dimensions. We establish the AdS/CFT dictionary and in
particular relate the couplings of the gravitational theory to the universal
couplings arising in correlators of the stress tensor of the dual CFT. This
allows us to examine constraints on the gravitational couplings by demanding
consistency of the CFT. In particular, one can demand positive energy fluxes in
scattering processes or the causal propagation of fluctuations. We also examine
the holographic hydrodynamics, commenting on the shear viscosity as well as the
relaxation time. The latter allows us to consider causality constraints arising
from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection
3.3 and new appendix B on conformal tensor fields. Added comments on the
relation between the central charge appearing in the two-point function and
the "central charge" characterizing the entropy density in the discussion.
References adde
Numerical modeling of the thermal contact in metal forming processes
Heat flow across the interface of solid bodies in
contact is an important aspect in several engineering applications.
This work presents a finite element model for the
analysis of thermal contact, which takes into account the
effect of contact pressure and gap dimension in the heat
flow across the interface between two bodies. Additionally,
the frictional heat generation is also addressed, which
is dictated by the contact forces predicted by the mechanical
problem. The frictional contact problem and thermal
problem are formulated in the frame of the finite element
method. A new law is proposed to define the interfacial heat
transfer coefficient (IHTC) as a function of the contact pressure
and gap distance, enabling a smooth transition between
two contact status (gap and contact). The staggered scheme
used as coupling strategy to solve the thermomechanical
problem is briefly presented. Four numerical examples are presented to validate the finite element model and highlight
the importance of the proposed law on the predicted
temperature.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology
(FCT) under the project PTDC/EMS-TEC/1805/2012 and by
FEDER funds through the program COMPETE Programa Operacional
Factores de Competitividade, under the project CENTRO-07-0224-
FEDER-002001 (MT4MOBI). The second author is also grateful to the
FCT for the postdoctoral grant SFRH/BPD/101334/2014. The authors
would like to thank Prof. A. Andrade-Campos for helpful contributions
on the development of the finite element code presented in this work.info:eu-repo/semantics/publishedVersio
Aharonov-Bohm interferences from local deformations in graphene
One of the most interesting aspects of graphene is the tied relation between
structural and electronic properties. The observation of ripples in the
graphene samples both free standing and on a substrate has given rise to a very
active investigation around the membrane-like properties of graphene and the
origin of the ripples remains as one of the most interesting open problems in
the system. The interplay of structural and electronic properties is
successfully described by the modelling of curvature and elastic deformations
by fictitious gauge fields that have become an ex- perimental reality after the
suggestion that Landau levels can form associated to strain in graphene and the
subsequent experimental confirmation. Here we propose a device to detect
microstresses in graphene based on a scanning-tunneling-microscopy setup able
to measure Aharonov-Bohm inter- ferences at the nanometer scale. The
interferences to be observed in the local density of states are created by the
fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
Holographic c-theorems in arbitrary dimensions
We re-examine holographic versions of the c-theorem and entanglement entropy
in the context of higher curvature gravity and the AdS/CFT correspondence. We
select the gravity theories by tuning the gravitational couplings to eliminate
non-unitary operators in the boundary theory and demonstrate that all of these
theories obey a holographic c-theorem. In cases where the dual CFT is
even-dimensional, we show that the quantity that flows is the central charge
associated with the A-type trace anomaly. Here, unlike in conventional
holographic constructions with Einstein gravity, we are able to distinguish
this quantity from other central charges or the leading coefficient in the
entropy density of a thermal bath. In general, we are also able to identify
this quantity with the coefficient of a universal contribution to the
entanglement entropy in a particular construction. Our results suggest that
these coefficients appearing in entanglement entropy play the role of central
charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of
odd-dimensional field theories, which extends Cardy's proposal for even
dimensions. Beyond holography, we were able to show that for any
even-dimensional CFT, the universal coefficient appearing the entanglement
entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
- …
