677 research outputs found

    Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis

    Get PDF
    Traumatic brain injury (TBI) is one of the most important death and disability cause, involving substantial costs, also in economic terms, when considering the young age of the involved subject. Aim of this paper is to report a series of patients treated at our institutions, to verify neurological results at six months or survival; in fatal cases we searched for βAPP, GFAP, IL-1β, NFL, Spectrin II, TUNEL and miR-21, miR-16, and miR-92 expressions in brain samples, to verify DAI diagnosis and grade as strong predictor of survival and inflammatory response. Concentrations of 8OHdG as measurement of oxidative stress was performed. Immunoreaction of β-APP, IL-1β, GFAP, NFL, Spectrin II and 8OHdG were significantly increased in the TBI group with respect to control group subjects. Cell apoptosis, measured by TUNEL assay, were significantly higher in the study group than control cases. Results indicated that miR-21, miR-92 and miR-16 have a high predictive power in discriminating trauma brain cases from controls and could represent promising biomarkers as strong predictor of survival, and for the diagnosis of postmortem traumatic brain injury

    Plasma photoemission from string theory

    Full text link
    Leading 't Hooft coupling corrections to the photoemission rate of the planar limit of a strongly-coupled {\cal {N}}=4 SYM plasma are investigated using the gauge/string duality. We consider the full order \alpha'^3 type IIB string theory corrections to the supergravity action, including higher order terms with the Ramond-Ramond five-form field strength. We extend our previous results presented in arXiv:1110.0526. Photoemission rates depend on the 't Hooft coupling, and their curves suggest an interpolating behaviour from strong towards weak coupling regimes. Their slopes at zero light-like momentum give the electrical conductivity as a function of the 't Hooft coupling, in full agreement with our previous results of arXiv:1108.6306. Furthermore, we also study the effect of corrections beyond the large N limit.Comment: 36 pages, 5 figures, paragraph added in the conclusions, references added, typos correcte

    R^4 counterterm and E7(7) symmetry in maximal supergravity

    Get PDF
    The coefficient of a potential R^4 counterterm in N=8 supergravity has been shown previously to vanish in an explicit three-loop calculation. The R^4 term respects N=8 supersymmetry; hence this result poses the question of whether another symmetry could be responsible for the cancellation of the three-loop divergence. In this article we investigate possible restrictions from the coset symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as well as a double-soft scalar limit relation derived recently by Arkani-Hamed et al. We implement these relations for the matrix elements of the R^4 term that occurs in the low-energy expansion of closed-string tree-level amplitudes. We find that the matrix elements of R^4 that we investigated all obey the double-soft scalar limit relation, including certain non-maximally-helicity-violating six-point amplitudes. However, the single-soft limit does not vanish for this latter set of amplitudes, which suggests that the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio

    On the spectral problem of N=4 SYM with orthogonal or symplectic gauge group

    Full text link
    We study the spectral problem of N=4 SYM with gauge group SO(N) and Sp(N). At the planar level, the difference to the case of gauge group SU(N) is only due to certain states being projected out, however at the non-planar level novel effects appear: While 1/N-corrections in the SU(N) case are always associated with splitting and joining of spin chains, this is not so for SO(N) and Sp(N). Here the leading 1/N-corrections, which are due to non-orientable Feynman diagrams in the field theory, originate from a term in the dilatation operator which acts inside a single spin chain. This makes it possible to test for integrability of the leading 1/N-corrections by standard (Bethe ansatz) means and we carry out various such tests. For orthogonal and symplectic gauge group the dual string theory lives on the orientifold AdS5xRP5. We discuss various issues related to semi-classical strings on this background.Comment: 25 pages, 3 figures. v2: Minor clarifications, section 5 expande

    Holographic current correlators at finite coupling and scattering off a supersymmetric plasma

    Full text link
    By studying the effect of the order(\alpha'^3) string theory corrections to type IIB supergravity, including those corrections involving the Ramond-Ramond five-form field strength, we obtain the corrected equations of motion of an Abelian perturbation of the AdS_5-Schwarzschild black hole. We then use the gauge theory/string theory duality to examine the coupling-constant dependence of vector current correlators associated to a gauged U(1) sub-group of the global R-symmetry group of strongly-coupled N=4 supersymmetric Yang-Mills theory at finite temperature. The corrections induce a set of higher-derivative operators for the U(1) gauge field, but their effect is highly suppressed. We thus find that the order(\alpha'^3) corrections affect the vector correlators only indirectly, through the corrected metric. We apply our results to investigate scattering off a supersymmetric Yang-Mills plasma at low and high energy. In the latter regime, where Deep Inelastic Scattering is expected to occur, we find an enhancement of the plasma structure functions in comparison with the infinite 't Hooft coupling result.Comment: 38 pages, 6 figures, minor clarifications added, typos corrected, references adde

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child

    Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system

    Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility.

    Get PDF
    Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs) and may influence the development of vascular disease. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. Here we describe a chemically defined protocol in which hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated toward SMCs (>80% MYH11(+) and ACTA2(+)), which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Notably, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. This differentiation approach will have broad applications in modeling origin-dependent disease susceptibility and in developing bioengineered vascular grafts for regenerative medicine

    Face scanning and spontaneous emotion preference in Cornelia de Lange syndrome and Rubinstein-Taybi syndrome

    Get PDF
    Background Existing literature suggests differences in face scanning in individuals with different socio-behavioural characteristics. Cornelia de Lange syndrome (CdLS) and Rubinstein-Taybi syndrome (RTS) are two genetically defined neurodevelopmental disorders with unique profiles of social behaviour. Methods Here, we examine eye gaze to the eye and mouth regions of neutrally expressive faces, as well as the spontaneous visual preference for happy and disgusted facial expressions compared to neutral faces, in individuals with CdLS versus RTS. Results Results indicate that the amount of time spent looking at the eye and mouth regions of faces was similar in 15 individuals with CdLS and 17 individuals with RTS. Both participant groups also showed a similar pattern of spontaneous visual preference for emotions. Conclusions These results provide insight into two rare, genetically defined neurodevelopmental disorders that have been reported to exhibit contrasting socio-behavioural characteristics and suggest that differences in social behaviour may not be sufficient to predict attention to the eye region of faces. These results also suggest that differences in the social behaviours of these two groups may be cognitively mediated rather than subcortically mediated
    corecore