9 research outputs found
Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands
We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and Adélie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual increase in gentoo breeding pairs
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination.
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise
Genetic structure of declining chinstrap penguin (Pygoscelis antarcticus) populations from South Shetland Islands (Antarctica)
Seabirds and their response to climate perturbations are important bioindicators of changes in Antarctic ecosystems. During 30 years of observations of two chinstrap penguin (Pygoscelis antarcticus) colonies, one on King George Island and the other on Penguin Island (South Shetland Islands, Antarctica), the size of the breeding populations decreased by 84 and 41 %, respectively. We applied analyses of amplified fragment length polymorphisms to study the genetic structure of the two populations and to evaluate the influence of the sudden population decrease. Our data indicate that there were only weak genetic differences between the populations, which were not strong enough to support the hypothesis of population differentiation. Weak genetic differences observed between the two populations seem not to be determined by selection processes. We hypothesize that the very low level of between-population genetic structure can be explained by some extent of genetic drift, which is largely compensated by gene flow. Moreover, the two populations seem to remain in a stationary state. Our results support the hypothesis of limited natal philopatry in chinstrap penguins. The observed decrease in population size is probably caused by migration or a rise in juvenile mortality due to the increasing krill limitation of the marine food web. However, detailed research is required to address this issue
External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region
Antarctic terrestrial ecosystems are nutrient-poor and depend for their functioning in part on external nutrients. However, little is known about the relative importance of various sources. We measured external mineral nutrient sources (wind blown material, precipitation and guano) at three locations, the cold temperate oceanic Falkland Islands (51°76′S), and the Maritime Antarctic Signy (60°71′S) and Anchorage Islands (67°61′S). These islands differ in the level of vegetation development through different environmental constraints and historical factors. Total mineral nitrogen input differed considerably between the islands. During the 3 month summer period it amounted to 18 mg N m−2 on the Falkland Islands and 6 and 102 mg N m−2 at Signy and Anchorage Islands, respectively. The high value for Anchorage was a result of guano deposition. By measuring stable isotopic composition (δ15N) of the different nitrogen sources and the dominant plant species, we investigated the relative utilisation of each source by the vegetation at each island. We conclude that external mineral nitrogen inputs to Antarctic terrestrial ecosystems show great spatial variability, with the local presence of bird (or other vertebrate) colonies being particularly significant
Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination
Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000–11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved ‘horizontal ice core’ from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600–12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise
