289 research outputs found

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics

    Get PDF
    Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer

    The mismeasure of ape social cognition

    Get PDF
    In his classic analysis, The Mismeasure of Man, Gould (1981) demolished the idea that intelligence was an inherent, genetic trait of different human groups by emphasizing, among other things, (a) its sensitivity to environmental input, (b) the incommensurate pre-test preparation of different human groups, and (c) the inadequacy of the testing contexts, in many cases. According to Gould, the root cause of these oversights was confirmation bias by psychometricians, an unwarranted commitment to the idea that intelligence was a fixed, immutable quality of people. By virtue of a similar, systemic interpretive bias, in the last two decades, numerous contemporary researchers in comparative psychology have claimed human superiority over apes in social intelligence, based on two-group comparisons between postindustrial, Western Europeans and captive apes, where the apes have been isolated from European styles of social interaction, and tested with radically different procedures. Moreover, direct comparisons of humans with apes suffer from pervasive lapses in argumentation: Research designs in wide contemporary use are inherently mute about the underlying psychological causes of overt behavior. Here we analyze these problems and offer a more fruitful approach to the comparative study of social intelligence, which focuses on specific individual learning histories in specific ecological circumstances

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome

    Get PDF
    Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Automated multi-scale computational pathotyping (AMSCP) of inflamed synovial tissue.

    Get PDF
    Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder in which patients suffer from inflammatory-erosive arthritis. Recent advances on histopathology heterogeneity of RA synovial tissue revealed three distinct phenotypes based on cellular composition (pauci-immune, diffuse and lymphoid), suggesting that distinct etiologies warrant specific targeted therapy which motivates a need for cost effective phenotyping tools in preclinical and clinical settings. To this end, we developed an automated multi-scale computational pathotyping (AMSCP) pipeline for both human and mouse synovial tissue with two distinct components that can be leveraged together or independently: (1) segmentation of different tissue types to characterize tissue-level changes, and (2) cell type classification within each tissue compartment that assesses change across disease states. Here, we demonstrate the efficacy, efficiency, and robustness of the AMSCP pipeline as well as the ability to discover novel phenotypes. Taken together, we find AMSCP to be a valuable cost-effective method for both pre-clinical and clinical research

    Eurythmy therapy in chronic disease: a four-year prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many patients with chronic diseases use complementary therapies, often provided by their physicians. In Germany, several physician-provided complementary therapies have been reimbursed by health insurance companies as part of health benefit programs. In most of these therapies, the patient has a predominantly passive role. In eurythmy therapy, however, patients actively exercise specific movements with the hands, the feet or the whole body. The purpose of this study was to describe clinical outcomes in patients practising eurythmy therapy exercises for chronic diseases.</p> <p>Methods</p> <p>In conjunction with a health benefit program, 419 outpatients from 94 medical practices in Germany, referred to 118 eurythmy therapists, participated in a prospective cohort study. Main outcomes were disease severity (Disease and Symptom Scores, physicians' and patients' assessment on numerical rating scales 0–10) and quality of life (adults: SF-36, children aged 8–16: KINDL, children 1–7: KITA). Disease Score was documented after 0, 6 and 12 months, other outcomes after 0, 3, 6, 12, 18, 24, and (SF-36 and Symptom Score) 48 months.</p> <p>Results</p> <p>Most common indications were mental disorders (31.7% of patients; primarily depression, fatigue, and childhood emotional disorder) and musculoskeletal diseases (23.4%). Median disease duration at baseline was 3.0 years (interquartile range 1.0–8.5). Median number of eurythmy therapy sessions was 12 (interquartile range 10–19), median therapy duration was 119 days (84–188).</p> <p>All outcomes improved significantly between baseline and all subsequent follow-ups (exceptions: KITA Psychosoma in first three months and KINDL). Improvements from baseline to 12 months were: Disease Score from mean (standard deviation) 6.65 (1.81) to 3.19 (2.27) (p < 0.001), Symptom Score from 5.95 (1.75) to 3.49 (2.12) (p < 0.001), SF-36 Physical Component Summary from 43.13 (10.25) to 47.10 (9.78) (p < 0.001), SF-36 Mental Component Summary from 38.31 (11.67) to 45.01 (11.76) (p < 0.001), KITA Psychosoma from 69.53 (15.45) to 77.21 (13.60) (p = 0.001), and KITA Daily Life from 59.23 (21.78) to 68.14 (18.52) (p = 0.001). All these improvements were maintained until the last follow-up. Improvements were similar in patients not using diagnosis-related adjunctive therapies within the first six study months.</p> <p>Adverse reactions to eurythmy therapy occurred in 3.1% (13/419) of patients. No patient stopped eurythmy therapy due to adverse reactions.</p> <p>Conclusion</p> <p>Patients practising eurythmy therapy exercises had long-term improvement of chronic disease symptoms and quality of life. Although the pre-post design of the present study does not allow for conclusions about comparative effectiveness, study findings suggest that eurythmy therapy can be useful for patients motivated for this therapy.</p
    corecore