606 research outputs found
Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism
In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth
Corrosion of the International Simple Glass under acidic to hyperalkaline conditions
Assessment of glass dissolution kinetics, under disposal relevant temperature and pH environments, is required to credibly estimate radionuclide release rates from vitrified radioactive waste. Leaching of the International Simple Glass (ISG) under acidic to hyperalkaline conditions was examined. Forward rate measurements have been obtained using the dynamic leaching SPFT protocol and rate parameters for B, Na and Si in the basic regime; errors in rates predicted using these parameters at high pH and temperature are significant because the fitting uses logarithmic data. Longer term behaviour under hyperalkaline conditions, representative of some disposal environments, was investigated using the PCT and MCC-1 static leaching protocols with Ca(OH)2 solutions for up to 120 days (PCT) and 720 days (MCC-1). In hyperalkaline conditions dissolution was incongruent for all elements and the presence of alternating zirconia-rich and zirconia-poor alteration layers was observed on all leached monoliths, indicating the occurrence of a self-organisation phenomenon during leaching
Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device
Purpose Objective evaluation of both antero-posterior
translation and rotatory laxity of the knee remains a target
to be accomplished. This is true for both preoperative
planning and postoperative assessment of different ACL
reconstruction emerging techniques. The ideal measurement tool should be simple, accurate and reproducible,
while enabling to assess both ‘‘anatomy’’ and ‘‘function’’
during the same examination. The purpose of this study is
to evaluate the clinical effectiveness of a new in-housedeveloped testing device, the so-called Porto-knee testing
device (PKTD). The PKTD is aimed to be used on the
evaluation of both antero-posterior and rotatory laxity of
the knee during MRI exams.
Methods Between 2008 and 2010, 33 patients with ACLdeficient knees were enrolled for the purpose of this study.
All patients were evaluated in the office and under
anesthesia with Lachman test, lateral pivot-shift test and
anterior drawer test. All cases were studied preoperatively
with KT-1000 and MRI with PKTD, and examinations
performed by independent observers blinded for clinical
evaluation. During MRI, we have used a PKTD that applies
antero-posterior translation and permits free tibial rotation
through a standardized pressure (46.7 kPa) in the proximal
posterior region of the leg. Measurements were taken for
both knees and comparing side-to-side. Five patients with
partial ruptures were excluded from the group of 33.
Results For the 28 remaining patients, 3 women and 25
men, with mean age of 33.4 ± 9.4 years, 13 left and 15 right
knees were tested. No significant correlation was noticed for
Lachman test and PKTD results (n.s.). Pivot-shift had a
strong positive correlation with the difference in anterior
translation registered in lateral and medial tibia plateaus of
injured knees (cor. coefficient = 0.80; p\0.05), and with
the difference in this parameter as compared to side-to-side
(cor. coefficient = 0.83; p\0.05).
Considering the KT-1000 difference between injured and
healthy knees, a very strong positive correlation was found
for side-to-side difference in medial (cor. coeffi-
cient = 0.73; p\0.05) and lateral (cor. coefficient = 0.5;
p\0.05) tibial plateau displacement using PKTD.
Conclusion The PKTD proved to be a reliable tool in
assessment of antero-posterior translation (comparing with
KT-1000) and rotatory laxity (compared with lateral pivotshift under anesthesia) of the ACL-deficient knee during
MRI examinatio
Fishers' behaviour in response to the implementation of a marine protected area
Marine Protected Areas (MPAs) have been widely proposed as a fisheries management tool in addition to their conservation purposes. Despite this, few studies have satisfactorily assessed the dynamics of fishers' adaptations to the loss of fishing grounds. Here we used data from before, during and after the implementation of the management plan of a temperate Atlantic multiple-use MPA to examine the factors affecting the spatial and temporal distribution of different gears used by the artisanal fishing fleet. The position of vessels and gear types were obtained by visual surveys and related to spatial features of the marine park. A hotspot analysis was conducted to identify heavily utilized patches for each fishing gear and time period. The contribution of individual vessels to each significant cluster was assessed to better understand fishers' choices. Different fisheries responded differently to the implementation of protection measures, with preferred habitats of target species driving much of the fishers' choices. Within each fishery, individual fishers showed distinct strategies with some operating in a broader area whereas others kept preferred territories. Our findings are based on reliable methods that can easily be applied in coastal multipurpose MPAs to monitor and assess fisheries and fishers responses to different management rules and protection levels. This paper is the first in-depth empirical study where fishers' choices from artisanal fisheries were analysed before, during and after the implementation of a MPA, thereby allowing a clearer understanding of the dynamics of local fisheries and providing significant lessons for marine conservation and management of coastal systems
AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound Planes
During pregnancy, ultrasound examination in the second trimester can assess fetal size according to standardized charts. To achieve a reproducible and accurate measurement, a sonographer needs to identify three standard 2D planes of the fetal anatomy (head, abdomen, femur) and manually mark the key anatomical landmarks on the image for accurate biometry and fetal weight estimation. This can be a time-consuming operator-dependent task, especially for a trainee sonographer. Computer-assisted techniques can help in automating the fetal biometry computation process. In this paper, we present a unified automated framework for estimating all measurements needed for the fetal weight assessment. The proposed framework semantically segments the key fetal anatomies using state-of-the-art segmentation models, followed by region fitting and scale recovery for the biometry estimation. We present an ablation study of segmentation algorithms to show their robustness through 4-fold cross-validation on a dataset of 349 ultrasound standard plane images from 42 pregnancies. Moreover, we show that the network with the best segmentation performance tends to be more accurate for biometry estimation. Furthermore, we demonstrate that the error between clinically measured and predicted fetal biometry is lower than the permissible error during routine clinical measurements
AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound Planes
During pregnancy, ultrasound examination in the second trimester can assess fetal size according to standardized charts. To achieve a reproducible and accurate measurement, a sonographer needs to identify three standard 2D planes of the fetal anatomy (head, abdomen, femur) and manually mark the key anatomical landmarks on the image for accurate biometry and fetal weight estimation. This can be a time-consuming operator-dependent task, especially for a trainee sonographer. Computer-assisted techniques can help in automating the fetal biometry computation process. In this paper, we present a unified automated framework for estimating all measurements needed for the fetal weight assessment. The proposed framework semantically segments the key fetal anatomies using state-of-the-art segmentation models, followed by region fitting and scale recovery for the biometry estimation. We present an ablation study of segmentation algorithms to show their robustness through 4-fold cross-validation on a dataset of 349 ultrasound standard plane images from 42 pregnancies. Moreover, we show that the network with the best segmentation performance tends to be more accurate for biometry estimation. Furthermore, we demonstrate that the error between clinically measured and predicted fetal biometry is lower than the permissible error during routine clinical measurements
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Dimensionless Squared Jerk - An Objective Differential to Assess Experienced and Novice Probe Movement in Obstetric Ultrasound
Objective:
Widely accepted, validated and objective measures of ultrasound competency have not been established for clinical practice. Outcomes of training curricula are often based on arbitrary thresholds, such as the number of clinical cases completed. We aimed to define metrics against which competency could be measured.
Method:
We undertook a prospective, observational study of obstetric sonographers at a UK University Teaching Hospital. Participants were either experienced in fetal ultrasound (n = 10, >200 ultrasound examinations) or novice operators (n = 10, <25 ultrasound examinations). We recorded probe motion data during the performance of biometry on a commercially available mid‐trimester phantom.
Results:
We report that Dimensionless squared jerk, an assessment of deliberate hand movements, independent of movement duration, extent, spurious peaks and dimension differed significantly different between groups, 19.26 (SD 3.02) for experienced and 22.08 (SD 1.05, p = 0.01) for novice operators, respectively. Experienced operator performance, was associated with a shorter time to task completion of 176.46 s (SD 47.31) compared to 666.94 s (SD 490.36, p = 0.0004) for novice operators. Probe travel was also shorter for experienced operators 521.23 mm (SD 27.41) versus 2234.82 mm (SD 188.50, p = 0.007) when compared to novice operators.
Conclusion:
Our results represent progress toward an objective assessment of technical skill in obstetric ultrasound. Repeating this methodology in a clinical environment may develop insight into the generalisability of these findings into ultrasound education
Dimensionless Squared Jerk - An Objective Differential to Assess Experienced and Novice Probe Movement in Obstetric Ultrasound
Objective:
Widely accepted, validated and objective measures of ultrasound competency have not been established for clinical practice. Outcomes of training curricula are often based on arbitrary thresholds, such as the number of clinical cases completed. We aimed to define metrics against which competency could be measured.
Method:
We undertook a prospective, observational study of obstetric sonographers at a UK University Teaching Hospital. Participants were either experienced in fetal ultrasound (n = 10, >200 ultrasound examinations) or novice operators (n = 10, <25 ultrasound examinations). We recorded probe motion data during the performance of biometry on a commercially available mid‐trimester phantom.
Results:
We report that Dimensionless squared jerk, an assessment of deliberate hand movements, independent of movement duration, extent, spurious peaks and dimension differed significantly different between groups, 19.26 (SD 3.02) for experienced and 22.08 (SD 1.05, p = 0.01) for novice operators, respectively. Experienced operator performance, was associated with a shorter time to task completion of 176.46 s (SD 47.31) compared to 666.94 s (SD 490.36, p = 0.0004) for novice operators. Probe travel was also shorter for experienced operators 521.23 mm (SD 27.41) versus 2234.82 mm (SD 188.50, p = 0.007) when compared to novice operators.
Conclusion:
Our results represent progress toward an objective assessment of technical skill in obstetric ultrasound. Repeating this methodology in a clinical environment may develop insight into the generalisability of these findings into ultrasound education
Protein disulphide isomerase-assisted functionalization of proteinaceous substrates
Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
- …
