518 research outputs found
Recommended from our members
Exploring the existence of a stayer population with mover-stayer counting process models: application to joint damage in psoriatic arthritis.
Many psoriatic arthritis patients do not progress to permanent joint damage in any of the 28 hand joints, even under prolonged follow-up. This has led several researchers to fit models that estimate the proportion of stayers (those who do not have the propensity to experience the event of interest) and to characterize the rate of developing damaged joints in the movers (those who have the propensity to experience the event of interest). However, when fitted to the same data, the paper demonstrates that the choice of model for the movers can lead to widely varying conclusions on a stayer population, thus implying that, if interest lies in a stayer population, a single analysis should not generally be adopted. The aim of the paper is to provide greater understanding regarding estimation of a stayer population by comparing the inferences, performance and features of multiple fitted models to real and simulated data sets. The models for the movers are based on Poisson processes with patient level random effects and/or dynamic covariates, which are used to induce within-patient correlation, and observation level random effects are used to account for time varying unobserved heterogeneity. The gamma, inverse Gaussian and compound Poisson distributions are considered for the random effects
Mining and analysis of audiology data to find significant factors associated with tinnitus masker
Objectives: The objective of this research is to find the factors associated with tinnitus masker from the literature, and by using the large amount of audiology data available from a large NHS (National Health Services, UK) hearing aid clinic. The factors evaluated were hearing impairment, age, gender, hearing aid type, mould and clinical comments.
Design: The research includes literature survey for factors associated with tinnitus masker, and performs the analysis of audiology data using statistical and data mining techniques.
Setting: This research uses a large audiology data but it also faced the problem of limited data for tinnitus.
Participants: It uses 1,316 records for tinnitus and other diagnoses, and 10,437 records of clinical comments from a hearing aid clinic.
Primary and secondary outcome measures: The research is looking for variables associated with tinnitus masker, and in future, these variables can be combined into a single model to develop a decision support system to predict about tinnitus masker for a patient.
Results: The results demonstrated that tinnitus maskers are more likely to be fit to individuals with milder forms of hearing loss, and the factors age, gender, type of hearing aid and mould were all found significantly associated with tinnitus masker. In particular, those patients having Age<=55 years were more likely to wear a tinnitus masker, as well as those with milder forms of hearing loss. ITE (in the ear) hearing aids were also found associated with tinnitus masker. A feedback on the results of association of mould with tinnitus masker from a professional audiologist of a large NHS (National Health Services, UK) was also taken to better understand them. The results were obtained with different accuracy for different techniques. For example, the chi-squared test results were obtained with 95% accuracy, for Support and Confidence only those results were retained which had more than 1% Support and 80% Confidence.
Conclusions: The variables audiograms, age, gender, hearing aid type and mould were found associated with the
choice of tinnitus masker in the literature and by using statistical and data mining techniques. The further work in this research would lead to the development of a decision support system for tinnitus masker with an explanation that how that decision was obtained
The versatility of multi-state models for the analysis of longitudinal data with unobservable features.
Multi-state models provide a convenient statistical framework for a wide variety of medical applications characterized by multiple events and longitudinal data. We illustrate this through four examples. The potential value of the incorporation of unobserved or partially observed states is highlighted. In addition, joint modelling of multiple processes is illustrated with application to potentially informative loss to follow-up, mis-measured or missclassified data and causal inference
Dynein structure and power stroke
Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke
Trivariate mover-stayer counting process models for investigating joint damage in psoriatic arthritis.
In psoriatic arthritis, many patients do not develop permanent joint damage even after a prolonged follow-up. This has led several authors to consider the possibility of a subpopulation of stayers (those who do not have the propensity to experience the event of interest), as opposed to assuming the entire population consist of movers (those who have the propensity to experience the event of interest). In addition, it is recognised that the damaged joints process may act very differently across different joint areas, particularly the hands, feet and large joints. From a clinical perspective, interest lies in identifying possible relationships between the damaged joints processes in these joint areas for the movers and estimating the proportion of stayers in these joint areas, if they exist. For this purpose, this paper proposes a novel trivariate mover-stayer model consisting of mover-stayer truncated negative binomial margins, and patient-level dynamic covariates and random effects in the models for the movers and stayers, respectively. The model is then extended to have a two-level mover-stayer structure for its margins so that the nature of the stayer property can be investigated. A particularly attractive feature of the proposed models is that only an optimisation routine is required in their model fitting procedures. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd
Mixture distributions in multi-state modelling: some considerations in a study of psoriatic arthritis.
In many studies, interest lies in determining whether members of the study population will undergo a particular event of interest. Such scenarios are often termed 'mover-stayer' scenarios, and interest lies in modelling two sub-populations of 'movers' (those who have a propensity to undergo the event of interest) and 'stayers' (those who do not). In general, mover-stayer scenarios within data sets are accounted for through the use of mixture distributions, and in this paper, we investigate the use of various random effects distributions for this purpose. Using data from the University of Toronto psoriatic arthritis clinic, we present a multi-state model to describe the progression of clinical damage in hand joints of patients with psoriatic arthritis. We consider the use of mover-stayer gamma, inverse Gaussian and compound Poisson distributions to account for both the correlation amongst joint locations and the possible mover-stayer situation with regard to clinical hand joint damage. We compare the fits obtained from these models and discuss the extent to which a mover-stayer scenario exists in these data. Furthermore, we fit a mover-stayer model that allows a dependence of the probability of a patient being a stayer on a patient-level explanatory variable
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Using linear increment models for the imputation of missing composite outcomes in randomized trials
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data.
In longitudinal randomised trials and observational studies within a medical context, a composite outcome-which is a function of several individual patient-specific outcomes-may be felt to best represent the outcome of interest. As in other contexts, missing data on patient outcome, due to patient drop-out or for other reasons, may pose a problem. Multiple imputation is a widely used method for handling missing data, but its use for composite outcomes has been seldom discussed. Whilst standard multiple imputation methodology can be used directly for the composite outcome, the distribution of a composite outcome may be of a complicated form and perhaps not amenable to statistical modelling. We compare direct multiple imputation of a composite outcome with separate imputation of the components of a composite outcome. We consider two imputation approaches. One approach involves modelling each component of a composite outcome using standard likelihood-based models. The other approach is to use linear increments methods. A linear increments approach can provide an appealing alternative as assumptions concerning both the missingness structure within the data and the imputation models are different from the standard likelihood-based approach. We compare both approaches using simulation studies and data from a randomised trial on early rheumatoid arthritis patients. Results suggest that both approaches are comparable and that for each, separate imputation offers some improvement on the direct imputation of a composite outcome
- …
