42 research outputs found
Impaired Adult Neurogenesis in the Dentate Gyrus of a Triple Transgenic Mouse Model of Alzheimer's Disease
It has become generally accepted that new neurones are added and integrated mainly in two areas of the mammalian CNS, the subventricular zone and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus, which is of central importance in learning and memory. The newly generated cells display neuronal morphology, are able to generate action potentials and receive functional synaptic inputs, i.e. their properties are similar to those found in mature neurones. Alzheimer's disease (AD) is the primary and widespread cause of dementia and is an age-related, progressive and irreversible neurodegenerative disease that deteriorates cognitive functions. Here, we have used male and female triple transgenic mice (3xTg-AD) harbouring three mutant genes (β-amyloid precursor protein, presenilin-1 and tau) and their respective non-transgenic (non-Tg) controls at 2, 3, 4, 6, 9 and 12 months of age to establish the link between AD and neurogenesis. Using immunohistochemistry we determined the area density of proliferating cells within the SGZ of the DG, measured by the presence of phosphorylated Histone H3 (HH3), and their possible co-localisation with GFAP to exclude a glial phenotype. Less than 1% of the HH3 labeled cells co-localised with GFAP. Both non-Tg and 3xTg-AD showed an age-dependent decrease in neurogenesis. However, male 3xTg-AD mice demonstrated a further reduction in the production of new neurones from 9 months of age (73% decrease) and a complete depletion at 12 months, when compared to controls. In addition, female 3xTg-AD mice showed an earlier but equivalent decrease in neurogenesis at 4 months (reduction of 63%) with an almost inexistent rate at 12 months (88% decrease) compared to controls. This reduction in neurogenesis was directly associated with the presence of β-amyloid plaques and an increase in the number of β-amyloid containing neurones in the hippocampus; which in the case of 3xgTg females was directly correlated. These results suggest that 3xTg-AD mice have an impaired ability to generate new neurones in the DG of the hippocampus, the severity of which increases with age and might be directly associated with the known cognitive impairment observed from 6 months of age onwards . The earlier reduction of neurogenesis in females, from 4 months, is in agreement with the higher prevalence of AD in women than in men. Thus it is conceivable to speculate that a recovery in neurogenesis rates in AD could help to rescue cognitive impairment
Factors associated with dropout from treatment for eating disorders: a comprehensive literature review
<p>Abstract</p> <p>Background</p> <p>Dropout (DO) is common in the treatment of eating disorders (EDs), but the reasons for this phenomenon remain unclear. This study is an extensive review of the literature regarding DO predictors in EDs.</p> <p>Methods</p> <p>All papers in PubMed, PsycINFO and Cochrane Library (1980-2009) were considered. Methodological issues and detailed results were analysed for each paper. After selection according to inclusion criteria, 26 studies were reviewed.</p> <p>Results</p> <p>The dropout rates ranged from 20.2% to 51% (inpatient) and from 29% to 73% (outpatient). Predictors of dropout were inconsistent due to methodological flaws and limited sample sizes. There is no evidence that baseline ED clinical severity, psychiatric comorbidity or treatment issues affect dropout. The most consistent predictor is the binge-purging subtype of anorexia nervosa. Good evidence exists that two psychological traits (high maturity fear and impulsivity) and two personality dimensions (low self-directedness, low cooperativeness) are related to dropout.</p> <p>Conclusion</p> <p>Implications for clinical practice and areas for further research are discussed. Particularly, these results highlight the need for a shared definition of dropout in the treatment of eating disorders for both inpatient and outpatient settings. Moreover, the assessment of personality dimensions (impulse control, self-efficacy, maturity fear and others) as liability factors for dropout seems an important issue for creating specific strategies to reduce the dropout phenomenon in eating disorders.</p
Recent advances and future directions in soils and sediments research
In 2010, the Journal of Soils and Sediments (JSS) reached a milestone: its 10th anniversary. This prompted us to think about where the academic community has come in its understanding of the behaviour of soils and sediments within landscapes. The rapid growth of the journal and the number of papers published in it, and other related journals, suggests, probably correctly, that there is much interest in the topics of soils and sediments. In the January 2011 editorial (Xu and Owens 2011), we presented an overview of some of the main developments in the past 10 years and provided some future directions of JSS for 2011 and beyond. In that editorial we indicated that a more comprehensive editorial would be published in the journal on the recent advances and future directions of soils and sediments research. The following sections are presented to fulfill this commitment and start a dialogue with the journal subject editors, authors and readers in these important areas of soils and sediments research. The dawn of the next decade of JSS is a good time to reflect on progress to-date and, more importantly, to consider where research needs to go in the years ahead; a time of rapid environment change, a time of rapid population growth, and a time when society is increasingly looking to science to provide the understanding (and solutions) to the problems that we face.No Full Tex
Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-κB
Dendritic cells (DC) are the most potent of antigen-presenting cells. The most important function of DC is to initiate the immune response by presenting antigens to naïve T lymphocytes. Currently, little is known about the basic action of lycopene in murine bone marrow (BM)-derived DC. In the present study, we have revealed that lycopene significantly attenuates the phenotypic and functional maturation of murine BM-DC, especially in lipopolysaccharide-induced DC maturation. We found that lycopene down-regulates the expression of costimulatory molecules (CD80 and CD86) and major histocompatibility complex type II molecules. We also determined that lycopene-treated DC were poor stimulators of naïve allogeneic T-cell proliferation and induced lower levels of interleukin-2 in responding T cells. They also exhibited impaired interleukin-12 production. Additionally, lycopene was able to inhibit mitogen-activated protein kinases, such as ERK1/2, p38 and JNK, and the transcription factor, nuclear factor-κB. Assessment of the in vivo effects of lycopene may reveal an inability to induce a normal cell-mediated immune response, despite the ability of the cells to migrate to the spleen. This data provides new insight into the immunopharmacology of lycopene and suggests a novel approach to the manipulation of DC for therapeutic application
Mechanisms of Cytomegalovirus-Accelerated Vascular Disease: Induction of Paracrine Factors That Promote Angiogenesis and Wound Healing
Pilot Induction Regimen Incorporating Pharmacokinetically Guided Topotecan for Treatment of Newly Diagnosed High-Risk Neuroblastoma: A Children's Oncology Group Study
Integrating biodiversity, remote sensing, and auxiliary information for the study of ecosystem functioning and conservation at large spatial scales
Assessing patterns and processes of plant functional, taxonomic, genetic, and structural biodiversity at large scales is essential across many disciplines, including ecosystem management, agriculture, ecosystem risk and service assessment, conservation science, and forestry. In situ data housed in databases necessary to perform such assessments over large parts of the world are growing steadily. Integrating these in situ data with remote sensing (RS) products helps not only to improve data completeness and quality but also to account for limitations and uncertainties associated with each data product. Here, we outline how auxiliary environmental and socioeconomic data might be integrated with biodiversity and RS data to expand our knowledge about ecosystem functioning and inform the conservation of biodiversity. We discuss concepts, data, and methods necessary to assess plant species and ecosystem properties across scales of space and time and provide a critical discussion of outstanding issues
