26 research outputs found

    Quantum advantage by relational queries about physically realizable equivalence classes

    Full text link
    Relational quantum queries are sometimes capable to effectively decide between collections of mutually exclusive elementary cases without completely resolving and determining those individual instances. Thereby the set of mutually exclusive elementary cases is effectively partitioned into equivalence classes pertinent to the respective query. In the second part of the paper, we review recent progress in theoretical certifications (relative to the assumptions made) of quantum value indeterminacy as a means to build quantum oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran, Iran, April 22-25, 201

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Towards a realistic interpretation of quantum mechanics providing a model of the physical world

    Full text link
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from Copenhagen to many worlds are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave-particle du- ality and the Bell inequalities are analyzed. The sketch of a realistic picture of the quantum world is presented. It rests upon the assump- tion that quantum mechanics is a stochastic theory whose randomness derives from the existence of vacuum fields. They correspond to the vacuum fluctuations of quantum field theory, but taken as real rather than virtual.Comment: 43 pages, paper throughout revised and somewhat enlarged, sections on the Bell inequalities and on the sketch of a picture of the quantum world rewritten, new references adde

    Roton-phonon excitations in Chern-Simons matter theory at finite density

    Get PDF
    We consider SU(N) Chern-Simons theory coupled to a scalar field in the fun- damental representation at strictly zero temperature and finite chemical potential for the global U(1)B particle number or flavour symmetry. In the semiclassical regime we identify a Bose condensed ground state with a vacuum expectation value (VEV) for the scalar accom- panied by noncommuting background gauge field matrix VEVs. These matrices coincide with the droplet ground state of the Abelian quantum Hall matrix model. The ground state spontaneously breaks U(1)B and Higgses the gauge group whilst preserving spatial rotations and a colour-flavour locked global U(1) symmetry. We compute the perturbative spectrum of semiclassical fluctuations for the SU(2) theory and show the existence of a single massless state with a linear phonon dispersion relation and a roton minimum (and maximum) determining the Landau critical superfluid velocity. For the massless scalar theory with vanishing self interactions, the semiclassical dispersion relations and location of roton extrema take on universal forms
    corecore