26 research outputs found
Quantum advantage by relational queries about physically realizable equivalence classes
Relational quantum queries are sometimes capable to effectively decide
between collections of mutually exclusive elementary cases without completely
resolving and determining those individual instances. Thereby the set of
mutually exclusive elementary cases is effectively partitioned into equivalence
classes pertinent to the respective query. In the second part of the paper, we
review recent progress in theoretical certifications (relative to the
assumptions made) of quantum value indeterminacy as a means to build quantum
oracles for randomness.Comment: 8 Pages, one figure, invited contribution to TopHPC2019, Tehran,
Iran, April 22-25, 201
Coverage, Continuity and Visual Cortical Architecture
The primary visual cortex of many mammals contains a continuous
representation of visual space, with a roughly repetitive aperiodic map of
orientation preferences superimposed. It was recently found that orientation
preference maps (OPMs) obey statistical laws which are apparently invariant
among species widely separated in eutherian evolution. Here, we examine whether
one of the most prominent models for the optimization of cortical maps, the
elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and
map continuity. While this model has been used in numerous studies, no
analytical results about the precise layout of the predicted OPMs have been
obtained so far. We present a mathematical approach to analytically calculate
the cortical representations predicted by the EN model for the joint mapping of
stimulus position and orientation. We find that in all previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search
through the EN parameter space identifies a novel regime of aperiodic OPMs with
pinwheel densities lower than found in experiments. In an extreme limit,
aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong nonlocal interactions rather
than from a coverage-continuity-compromise. Our results demonstrate that
optimization models for stimulus representations dominated by nonlocal
suppressive interactions are in principle capable of correctly predicting the
common OPM design. They question that visual cortical feature representations
can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
Towards a realistic interpretation of quantum mechanics providing a model of the physical world
It is argued that a realistic interpretation of quantum mechanics is possible
and useful. Current interpretations, from Copenhagen to many worlds are
critically revisited. The difficulties for intuitive models of quantum physics
are pointed out and possible solutions proposed. In particular the existence of
discrete states, the quantum jumps, the alleged lack of objective properties,
measurement theory, the probabilistic character of quantum physics, the
wave-particle du- ality and the Bell inequalities are analyzed. The sketch of a
realistic picture of the quantum world is presented. It rests upon the assump-
tion that quantum mechanics is a stochastic theory whose randomness derives
from the existence of vacuum fields. They correspond to the vacuum fluctuations
of quantum field theory, but taken as real rather than virtual.Comment: 43 pages, paper throughout revised and somewhat enlarged, sections on
the Bell inequalities and on the sketch of a picture of the quantum world
rewritten, new references adde
Roton-phonon excitations in Chern-Simons matter theory at finite density
We consider SU(N) Chern-Simons theory coupled to a scalar field in the fun- damental representation at strictly zero temperature and finite chemical potential for the global U(1)B particle number or flavour symmetry. In the semiclassical regime we identify a Bose condensed ground state with a vacuum expectation value (VEV) for the scalar accom- panied by noncommuting background gauge field matrix VEVs. These matrices coincide with the droplet ground state of the Abelian quantum Hall matrix model. The ground state spontaneously breaks U(1)B and Higgses the gauge group whilst preserving spatial rotations and a colour-flavour locked global U(1) symmetry. We compute the perturbative spectrum of semiclassical fluctuations for the SU(2) theory and show the existence of a single massless state with a linear phonon dispersion relation and a roton minimum (and maximum) determining the Landau critical superfluid velocity. For the massless scalar theory with vanishing self interactions, the semiclassical dispersion relations and location of roton extrema take on universal forms
