32 research outputs found
Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data
Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents
Native plant communities from arid areas present distinctive characteristics to survive in extreme
conditions. The large number of poorly studied endemic plants represents a unique potential
source for the discovery of novel fungal symbionts as well as host-specific endophytes not yet
described. The addition of adsorptive polymeric resins in fungal fermentations has been seen to
promote the production of new secondary metabolites and is a tool used consistently to generate
new compounds with potential biological activities. A total of 349 fungal strains isolated from 63
selected plant species from arid ecosystems located in the southeast of the Iberian Peninsula, were
characterized morphologically as well as based on their ITS/28S ribosomal gene sequences. The fungal
community isolated was distributed among 19 orders including Basidiomycetes and Ascomycetes,
being Pleosporales the most abundant order. In total, 107 different genera were identified being
Neocamarosporium the genus most frequently isolated from these plants, followed by Preussia and
Alternaria. Strains were grown in four different media in presence and absence of selected resins to
promote chemical diversity generation of new secondary metabolites. Fermentation extracts were
evaluated, looking for new antifungal activities against plant and human fungal pathogens, as well
as, cytotoxic activities against the human liver cancer cell line HepG2. From the 349 isolates tested,
126 (36%) exhibited significant bioactivities including 58 strains with exclusive antifungal properties
and 33 strains with exclusive activity against the HepG2 hepatocellular carcinoma cell line. After LCMS
analysis, 68 known bioactive secondary metabolites could be identified as produced by 96 strains,
and 12 likely unknown compounds were found in a subset of 14 fungal endophytes. The chemical
profiles of the differential expression of induced activities were compared. As proof of concept, ten
active secondary metabolites only produced in the presence of resins were purified and identified. The
structures of three of these compounds were new and herein are elucidated.This work was supported by Fundación MEDINA and the Andalusian Government grant
RNM-7987 ‘Sustainable use of plants and their fungal parasites from arid regions of Andalucía for new molecules
useful for antifungals and neuroprotectors’
The 2024 Outline of Fungi and fungus-like taxa
With the simultaneous growth in interest from the mycological community to discover fungal species and classify them, there is also an important need to assemble all taxonomic information onto common platforms. Fungal classification is facing a rapidly evolving landscape and organizing genera into an appropriate taxonomic hierarchy is central to better structure a unified classification scheme and avoid incorrect taxonomic inferences. With this in mind, the Outlines of Fungi and fungus-like taxa (2020, 2022) were published as an open-source taxonomic scheme to assist mycologists to better understand the taxonomic position of species within the Fungal Kingdom as well as to improve the accuracy and consistency of our taxonomic language. In this paper, the third contribution to the series of Outline of Fungi and fungus-like taxa prepared by the Global Consortium for the Classification of Fungi and fungus-like taxa is published. The former is updated considering our previous reviews and the taxonomic changes based on recent taxonomic work. In addition, it is more comprehensive and derives more input and consensus from a larger number of mycologists worldwide. Apart from listing the position of a particular genus in a taxonomic level, nearly 1000 notes are provided for newly established genera and higher taxa introduced since 2022. The notes section emphasizes on recent findings with corresponding references, discusses background information to support the current taxonomic status and some controversial taxonomic issues are also highlighted. To elicit maximum taxonomic information, notes/taxa are linked to recognized databases such as Index Fungorum, Faces of Fungi, MycoBank and GenBank, Species Fungorum and others. A new feature includes links to Fungalpedia, offering notes in the Compendium of Fungi and fungus-like Organisms. When specific notes are not provided, links are available to webpages and relevant publications for genera or higher taxa to ease data accessibility. Following the recent synonymization of Caulochytriomycota under Chytridiomycota, with Caulochytriomycetes now classified as a class within the latter, based on formally described and currently accepted data, the Fungi comprises 19 Phyla, 83 classes, 1,220 families, 10,685 genera and ca 140,000 species. Of the genera, 39.5% are monotypic and this begs the question whether mycologists split genera unnecessarily or are we going to find other species in these genera as more parts of the world are surveyed? They are 433 speciose genera with more than 50 species. The document also highlights discussion of some important topics including number of genera categorized as incertae sedis status in higher level fungal classification. The number of species at the higher taxonomic level has always been a contentious issue especially when mycologists consider either a lumping or a splitting approach and herein we provide figures. Herein a summary of updates in the outline of Basidiomycota is provided with discussion on whether there are too many genera of Boletales, Ceratobasidiaceae, and speciose genera such as Colletotrichum. Specific case studies deal with Cortinarius, early diverging fungi, Glomeromycota, a diverse early divergent lineage of symbiotic fungi, Eurotiomycetes, marine fungi, Myxomycetes, Phyllosticta, Hymenochaetaceae and Polyporaceae and the longstanding practice of misapplying intercontinental conspecificity. The outline will aid to better stabilize fungal taxonomy and serves as a necessary tool for mycologists and other scientists interested in the classification of the Fungi
A family level rDNA based phylogeny of Cucurbitariaceae and Fenestellaceae with descriptions of new Fenestella species and Neocucurbitaria gen. nov.
Morphology and Phylogeny of Two Novel Species within the Class Dothideomycetes Collected from Soil in Korea
The importance of culture-based techniques in the genomic era for assessing the taxonomy and diversity of soil fungi
Bambusicolous mycopathogens in China with an update on taxonomic diversity, novel species, pathogenicity, and new insights
A novel marine genus, Halobyssothecium (Lentitheciaceae) and epitypification of Halobyssothecium obiones comb. nov.
Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus
During a survey of endophytic fungi from the cactus Tacinga inamoena in a Brazilian tropical
dry forest (Caatinga) some undescribed ascomycetous fungi were isolated. These fungi are
characterized by superficial and immersed, globose to subglobose, smooth or hairy
ascomata, bitunicate asci, and muriformly septate, ellipsoidal ascospores. Multigene
phylogenetic analyses using sequences from partial ITS, SSU and LSU nrDNA and the
translation elongation factor 1-alpha gene (tef1) demonstrated a monophyletic clade
accommodating these endophytic fungi in the class Dothideomycetes, closely related to the
order Tubeufiales. Based on morphological features and phylogenetic analyses, these fungi
could not be placed in the order Tubeufiales, in the new order Wiesneriomycetales, or any
other known genus in the class Dothideomycetes. Thus, two new genera (Bezerromyces,
with B. brasiliensis and B. pernambucoensis, and Xiliomyces with X. brasiliensis), a new
family (Bezerromycetaceae) and a new order (Bezerromycetales) are introduced to
accommodate these novel taxa. Our phylogenetic analyses also demonstrated that the clade
accommodating Wiesneriomycetaceae represents a new order, here introduced as
Wiesneriomycetales.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process
203132/2014-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) of Brazil.http://link.springer.com/journal/115572018-04-30hb2017Microbiology and Plant Patholog
