9 research outputs found
Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study
<p>Abstract</p> <p>Background</p> <p>Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces.</p> <p>A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied.</p> <p>Methods</p> <p>The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed.</p> <p>Results</p> <p>The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw), 564,05 N (Group 2; 9 × 28), 614,95 N (Group 3; 9 × 35), 651,14 N (Group 4; 10 × 28) and 664,99 (Group 5; 10 × 35). No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P < 0.001).</p> <p>Conclusions</p> <p>Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm) do not achieve optimal fixation and should be implanted only with special requirements.</p
Anterior cruciate ligament reconstruction, rehabilitation, and return to play: 2015 update
John Nyland,1,2 Alma Mattocks,1 Shane Kibbe,2 Alaa Kalloub,2,3 Joe W Greene,4 David N M Caborn2,3 1Athletic Training Program, Kosair Charities College of Health and Natural Sciences, Spalding University, Louisville, KY, USA; 2Department of Orthopedic Surgery, University of Louisville, Louisville, KY, USA; 3Shea Orthopedic Group, Louisville, KY, USA; 4Norton Orthopedic and Sports, Louisville, KY, USA Abstract: Anatomical discoveries and a growing appreciation of the knee as a complex organ are driving innovations in patient care decision-making following anterior cruciate ligament (ACL) injury. Surgeons are increasing their efforts to restore combined mechanical-neurosensory ACL function and placing more consideration on when to reconstruct versus repair native anatomical structures. Surgical options now include primary repair with or without reinforcing the injured ACL with suture-based internal bracing, and growing evidence supports biological augmentation using platelet-rich plasma and mesenchymal stem cells to enhance tissue healing. Physical therapists and athletic trainers are increasing their efforts to facilitate greater athlete cognitive engagement during therapeutic exercise performance to better restore nonimpaired neuromuscular control activation amplitude and timing. Knee brace design and use needs to evolve to better match these innovations and their influence on the rehabilitation plan timetable. There is a growing appreciation for the multifaceted characteristics of the rehabilitation process and how they influence neuromuscular, educational, and psychobehavioral treatment goal achievement. Multiple sources may influence the athlete during the return to sports process and clinical outcome measures need to be refined to better evaluate these influences. This update summarizes contemporary ACL surgical, medical, and rehabilitation interventions and future trends. Keywords: arthroscopy, knee, function, outcomes, decision-making 
Influence of micro- and nano-hydroxyapatite coatings on the osteointegration of metallic (Ti6Al4 V) and bioabsorbable interference screws: an in vivo study
Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption
Can tape–screw fixation of a quadrupled semitendinosus graft in a full-length tibial tunnel provide superior fixation compared with a doubled semitendinosus–gracilis held with an interference screw? A matched-pair cadaveric biomechanical comparison
Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons
This work analyzes the effects of storage by fresh-freezing at −80°C on the histological, structural and biomechanical properties of the human posterior tibial tendon (PTT), used for ACL reconstruction. Twenty-two PTTs were harvested from eleven donors. For each donor one tendon was frozen at −80°C and thawed in physiological solution at 37°C, and the other was tested without freezing (control). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and biomechanical analysis were performed. We found the following mean changes in frozen-thawed tendons compared to controls: TEM showed an increase in the mean diameter of collagen fibrils and in fibril non-occupation mean ratio, while the mean number of fibrils decreased; DSC showed a decrease in mean denaturation temperature and denaturation enthalpy. Biomechanical analysis showed a decrease in ultimate load and ultimate stress, an increase in stiffness and a decrease in ultimate strain of tendons. In conclusion fresh-freezing brings about significant changes in the biomechanical and structural properties of the human PTT. A high variability exists in the biophysical properties of tendons among individuals and in the effects of storage on tendons. Therefore, when choosing an allograft tendon, particular care is needed to choose a biomechanically suitable graft
