1,859 research outputs found

    The intracellular plasma membrane-connected compartment in the assembly of HIV-1 in human macrophages

    Get PDF
    Background In HIV-infected macrophages, newly formed progeny virus particles accumulate in intracellular plasma membrane-connected compartments (IPMCs). Although the virus is usually seen in these compartments, it is unclear whether HIV assembly is specifically targeted to IPMCs or whether some viruses may also form at the cell surface but are not detected, as particles budding from the latter site will be released into the medium. Results To investigate the fidelity of HIV-1 targeting to IPMCs compared to the cell surface directly, we generated mutants defective in recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) proteins required for virus scission. For mutants unable to bind the ESCRT-I component Tsg101, HIV release was inhibited and light and electron microscopy revealed that budding was arrested. When expressed in human monocyte-derived macrophages (MDM), these mutants formed budding-arrested, immature particles at their assembly sites, allowing us to capture virtually all of the virus budding events. A detailed morphological analysis of the distribution of the arrested viruses by immunofluorescence staining and confocal microscopy, and by electron microscopy, demonstrated that HIV assembly in MDMs is targeted primarily to IPMCs, with fewer than 5 % of budding events seen at the cell surface. Morphometric analysis of the relative membrane areas at the cell surface and IPMCs confirmed a large enrichment of virus assembly events in IPMCs. Serial block-face scanning electron microscopy of macrophages infected with a budding-defective HIV mutant revealed high-resolution 3D views of the complex organisation of IPMCs, with in excess of 15,000 associated HIV budding sites, and multiple connections between IPMCs and the cell surface

    Acoustics of multiscale sorptive porous materials

    Get PDF
    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves

    3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    Get PDF
    The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocytederived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research

    Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics

    Get PDF
    Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. Simple diagnostic tests have been developed that involve the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment of risk of further disease in individual patients. However, oral diseases have a complex etiology, and because only around 50% of oral biofilm can be grown at present, culture-independent molecular-based approaches are being developed that give a more comprehensive assessment of the presence of a range of putative pathogens in samples. The diversity of these biofilms creates challenges in the interpretation of findings, and future work is investigating the ability of novel techniques to detect biological activity and function in oral biofilms, rather than simply providing a catalogue of microbial names

    Risk of SARS-CoV-2 Transmission During Flexible Laryngoscopy: A Systematic Review.

    Get PDF
    IMPORTANCE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reportedly infected otolaryngologists disproportionately in the early parts of the coronavirus disease 2019 pandemic. Recommendations from national and international health organizations suggest minimizing the use of flexible laryngoscopy as a result. OBJECTIVE: To review evidence on the risks of aerosolization and transmission of SARS-CoV-2 from patients to health care personnel during endoscopy of the upper aerodigestive tract. EVIDENCE REVIEW: A comprehensive review of literature was performed on April 19, 2020, using the PubMed/MEDLINE (1966-April 2020), Embase (1975-April 2020), and Web of Science (1900-April 2020) databases. All English-language primary research studies were included if they assessed the transmission of SARS-CoV-2 or SARS-CoV-1 during procedures in the upper aerodigestive tract. The primary outcome measure was disease transmission among health care workers. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for accuracy of reporting. FINDINGS: The queries for SARS-CoV-2 and SARS-CoV-1 identified 6 articles for systematic review. No studies included in this review provided data for SARS-CoV-2 transmission during flexible laryngoscopy. A total of 204 of 1264 health care workers (16.1%) had procedure-specific infections of SARS-CoV-1 or SARS-CoV-2. Among those, 53 of 221 (24.0%) were exposed during intubation, 1 of 15 (6.7%) during bronchoscopy, and 1 of 1 (100%) during endoscopy-assisted intubation. CONCLUSIONS AND RELEVANCE: A substantial lack of research precludes formal conclusions about the safety of flexible laryngoscopy and transmission of SARS-CoV-2 from patients to health care workers. The use of appropriate precautionary measures and personal protective equipment appears to reduce the risk of transmission. Given the uncertainty in transmission and the known benefits of safety precautions, upper airway endoscopy may be reasonable to perform if precautionary steps are taken

    Wear and corrosion interactions on titanium in oral environment : literature review

    Get PDF
    The oral cavity is a complex environment where corrosive substances from dietary, human saliva, and oral biofilms may accumulate in retentive areas of dental implant systems and prostheses promoting corrosion at their surfaces. Additionally, during mastication, micromovements may occur between prosthetic joints causing a relative motion between contacting surfaces, leading to wear. Both processes (wear and corrosion) result in a bio-tribocorrosion system once that occurs in contact with biological tissues and fluids. This review paper is focused on the aspects related to the corrosion and wear behavior of titanium-based structures in the oral environment. Furthermore, the clinical relevance of the oral environment is focused on the harmful effect that acidic substances and biofilms, formed in human saliva, may have on titanium surfaces. In fact, a progressive degradation of titanium by wear and corrosion (tribocorrosion) mechanisms can take place affecting the performance of titanium-based implant and prostheses. Also, the formation of wear debris and metallic ions due to the tribocorrosion phenomena can become toxic for human tissues. This review gathers knowledge from areas like materials sciences, microbiology, and dentistry contributing to a better understanding of bio-tribocorrosion processes in the oral environment.(undefined
    corecore