4,578 research outputs found
Comparison of CDMS [100] and [111] oriented germanium detectors
The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3" diameter
1" thick target masses as particle detectors. The target is
instrumented with both phonon and ionization sensors and comparison of energy
in each channel provides event-by-event classification of electron and nuclear
recoils. Fiducial volume is determined by the ability to obtain good phonon and
ionization signal at a particular location. Due to electronic band structure in
germanium, electron mass is described by an anisotropic tensor with heavy mass
aligned along the symmetry axis defined by the [111] Miller index (L valley),
resulting in large lateral component to the transport. The spatial distribution
of electrons varies significantly for detectors which have their longitudinal
axis orientations described by either the [100] or [111] Miller indices.
Electric fields with large fringing component at high detector radius also
affect the spatial distribution of electrons and holes. Both effects are
studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is
discussed.Comment: Low Temperature Detector 14 conference proceedings to be published in
the Journal of Low Temperature Physic
An Eccentric Hot Jupiter Orbiting the Subgiant HD 185269
We report the detection of a Jupiter-mass planet in a 6.838 day orbit around
the 1.28 solar mass subgiant HD 185269. The eccentricity of HD 185269b (e =
0.30) is unusually large compared to other planets within 0.1 AU of their
stars. Photometric observations demonstrate that the star is constant to
+/-0.0001 mag on the radial velocity period, strengthening our interpretation
of a planetary companion. This planet was detected as part of our radial
velocity survey of evolved stars located on the subgiant branch of the H-R
diagram--also known as the Hertzsprung Gap. These stars, which have masses
between 1.2 and 2.5 solar masses, play an important role in the investigation
of the frequency of extrasolar planets as a function of stellar mass.Comment: 18 pages, 4 figures, 3 tables, ApJ in press (scheduled for Dec 2006,
v652n2
Validation of Phonon Physics in the CDMS Detector Monte Carlo
The SuperCDMS collaboration is a dark matter search effort aimed at detecting
the scattering of WIMP dark matter from nuclei in cryogenic germanium targets.
The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at
achieving a deeper understanding of the performance of the SuperCDMS detectors
and aiding the dark matter search analysis. We present results from validation
of the phonon physics described in the CDMS-DMC and outline work towards
utilizing it in future WIMP search analyses.Comment: 6 Pages, 5 Figures, Proceedings of Low Temperature Detectors 14
Conferenc
A review of information flow diagrammatic models for product-service systems
A product-service system (PSS) is a combination of products and services to
create value for both customers and manufacturers. Modelling a PSS based on
function orientation offers a useful way to distinguish system inputs and
outputs with regards to how data are consumed and information is used, i.e.
information flow. This article presents a review of diagrammatic information
flow tools, which are designed to describe a system through its functions. The
origin, concept and applications of these tools are investigated, followed by an
analysis of information flow modelling with regards to key PSS properties. A
case study of selection laser melting technology implemented as PSS will then be
used to show the application of information flow modelling for PSS design. A
discussion based on the usefulness of the tools in modelling the key elements of
PSS and possible future research directions are also presented
Results from a Low-Energy Analysis of the CDMS II Germanium Data
We report results from a reanalysis of data from the Cryogenic Dark Matter
Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken
between October 2006 and September 2008 using eight germanium detectors are
reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased
sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs)
with masses below ~10 GeV/c^2. This analysis provides stronger constraints than
previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter
space associated with possible low-mass WIMP signals from the DAMA/LIBRA and
CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary
files. v3) Added appendix with additional details regarding energy scale and
background
Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors
We present results on quasidi usion studies in large, 3 inch diameter, 1 inch thick [100]
high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator,
and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare
data obtained in two di erent detector types, with di erent phonon sensor area coverage,
with results from a Monte Carlo. The Monte Carlo includes phonon quasidi usion and the
generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.United States. Dept. of Energy (Grant DE-FG02-04ER41295)United States. Dept. of Energy (Grant DE-FG02-07ER41480)National Science Foundation (U.S.) (Grant PHY-0542066)National Science Foundation (U.S.) (Grant PHY-0503729)National Science Foundation (U.S.) (Grant PHY-0503629)National Science Foundation (U.S.) (Grant PHY-0504224)National Science Foundation (U.S.) (Grant PHY-0705078)National Science Foundation (U.S.) (Grant PHY-0801712
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
Search for inelastic dark matter with the CDMS II experiment
Results are presented from a reanalysis of the entire five-tower data set
acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the
Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis
window was extended to a recoil energy of 150 keV, and an improved
surface-event background-rejection cut was defined to increase the sensitivity
of the experiment to the inelastic dark matter (iDM) model. Three dark matter
candidates were found between 25 keV and 150 keV. The probability to observe
three or more background events in this energy range is 11%. Because of the
occurrence of these events the constraints on the iDM parameter space are
slightly less stringent than those from our previous analysis, which used an
energy window of 10-100 keV.Comment: 10 pages, 10 figures, minor changes to match published version,
conclusion unchange
- …
