1,864 research outputs found

    Autocatalytic and cooperatively-stabilized dissociation of water on a stepped platinum surface

    Full text link
    Water-metal interfaces are ubiquitous and play a key role in many chemical processes, from catalysis to corrosion. Whereas water adlayers on atomically flat transition metal surfaces have been investigated in depth, little is known about the chemistry of water on stepped surfaces, commonly occurring in realistic situations. Using first-principles simulations we study the adsorption of water on a stepped platinum surface. We find that water adsorbs preferentially at the step edge, forming linear clusters or chains, stabilized by the cooperative effect of chemical bonds with the substrate and hydrogen bonds. In contrast with flat Pt, at steps water molecules dissociate forming mixed hydroxyl/water structures, through an autocatalytic mechanism promoted by hydrogen bonding. Nuclear quantum effects contribute to stabilize partially dissociated cluster and chains. Together with the recently demonstrated attitude of water chains adsorbed on stepped Pt surfaces to transfer protons via thermally activated hopping, these findings candidate these systems as viable proton wires.Comment: 19 pages, 4 figure

    Evolution of the structure of amorphous ice - from low-density amorphous (LDA) through high-density amorphous (HDA) to very high-density amorphous (VHDA) ice

    Full text link
    We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice (LDA) at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.Comment: 11 pages, 12 postscript figures. To be published in The Journal of Chemical Physic

    Nanofriction behavior of cluster-assembled carbon films

    Get PDF
    We have characterized the frictional properties of nanostructured (ns) carbon films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed on the basis of a modified Amonton's law for friction, stating a linear dependence of friction on load plus an adhesive offset accounting for a finite friction force in the limit of null total applied load. Molecular Dynamics simulations of the interaction of the AFM tip with the nanostructured carbon confirm the validity of the friction model used for this system. Experimental results show that the friction coefficient is not influenced by the nanostructure of the films nor by the relative humidity. On the other hand the adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex

    Quantum Sensor Miniaturization

    Full text link
    The classical bound on image resolution defined by the Rayleigh limit can be beaten by exploiting the properties of quantum mechanical entanglement. If entangled photons are used as signal states, the best possible resolution is instead given by the Heisenberg limit, an improvement proportional to the number of entangled photons in the signal. In this paper we present a novel application of entanglement by showing that the resolution obtained by an imaging system utilizing separable photons can be achieved by an imaging system making use of entangled photons, but with the advantage of a smaller aperture, thus resulting in a smaller and lighter system. This can be especially valuable in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology Letter

    Freezing of a Lennard-Jones fluid: from nucleation to spinodal regine

    Get PDF
    Using molecular dynamics, we investigate the crystal nucleation in a Lennard-Jones fluid as a function of the degree of supercooling. At moderate supercooling, a nucleation picture applies, while for deeper quenches, the phenomenon progressively acquires a spinodal character. We show that in the nucleation regime, the freezing is a two-step process. The formation of the critical nucleus is indeed preceded by the abrupt formation of a precritical crystallite from a density fluctuation in the fluid. In contrast, as the degree of supercooling is increased, crystallization proceeds in a more continuous and collective fashion and becomes more spatially diffuse, indicating that the liquid is unstable and crystallizes by a spinodal mechanism

    Highly Anistoropic Thermal Conductivity of Arsenene: An ab initio Study

    Get PDF
    Elemental 2D materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using {\it ab initio} calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity, of 30.430.4 and 7.87.8 W/mK along the zigzag and armchair directions, respectively at room temperature. Our calculations reveal that phonons with mean free paths between 2020 nm and 11 μ\mum provide the main contribution to the large thermal conductivity in the zig-zag direction, mean free paths of phonons contributing to heat transport in the armchair directions range between 2020 and 100100 nm. The obtained low and anisotropic thermal conductivity, and feasibility of synthesis, in addition to other reports on high electron mobility, make arsenene a promising material for a variety of applications, including thermal management and thermoelectric devices.Comment: 5 pages, 7 figure

    Polyamorphism of ice at low temperatures from constant-pressure simulations

    Full text link
    We report results of MD simulations of amorphous ice in the pressure range 0 - 22.5 kbar. The high-density amorphous ice (HDA) prepared by compression of Ih ice at T = 80 K is annealed to T = 170 K at intermediate pressures in order to generate relaxed states. We confirm the existence of recently observed phenomena, the very high-density amorphous ice and a continuum of HDA forms. We suggest that both phenomena have their origin in the evolution of the network topology of the annealed HDA phase with decreasing volume, resulting at low temperatures in the metastability of a range of densities.Comment: 11 pages, 5 postscript figures. To be published in Physical Review Letter

    Water on Pt(111): the importance of proton disorder

    Full text link
    The structure of a water adlayer on Pt(111) surface is investigated by extensive first principle calculations. Only allowing for proton disorder the ground state energy can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. The resulting short O-Pt distance accounts for experimental evidences. The novelty of these results shed a new light on relevant aspects of water-metal interaction.Comment: 10 pages 4 figures (color

    Photoelasticity of sodium silicate glass from first principles

    Full text link
    Based on density-functional perturbation theory we have computed the photoelastic tensor of a model of sodium silicate glass of composition (Na2_2O)0.25_{0.25}(SiO2_2)0.75_{0.75} (NS3). The model (containig 84 atoms) is obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The calculated photoelastic coefficients are in good agreement with experimental data. In particular, the calculation reproduces quantitatively the decrease of the photoelastic response induced by the insertion of Na, as measured experimentally. The extension to NS3 of a phenomenological model developed in a previous work for pure a-SiO2_2 indicates that the modulation upon strain of other structural parameters besides the SiOSi angles must be invoked to explain the change in the photoelstic response induced by Na
    corecore