109 research outputs found

    Spring molybdenum enrichment in scallop shells: a potential tracer of diatom productivity in temperate coastal environments (Brittany, NW France)

    Get PDF
    Skeletal molybdenum/calcium ([Mo]/[Ca])<sub>shell</sub> ratios were examined in shells of the Great Scallop <i>Pecten maximus</i> collected in temperate coastal environments of Western Europe (42 to 49&deg; N). These ratios were determined by quantitative LA-ICP-MS analyses of daily striae taken every third day (i.e. a temporal resolution of 3 days) in 36 flat valves (2-years old; 3 shells/year). Variations of ([Mo]/[Ca])<sub>shell</sub> ratios were significant and reproducible for scallops from the same population, from different years (1998–2004) and temperate coastal locations (NW France). The [Mo]/[Ca])<sub>shell</sub> ratios exhibit typical profiles characterized by a background content, below the detection limit for this method (&lt;0.003 &mu;mol/mol) for most of the shell growth period, which is punctuated by a significant transient enrichment (0.031–2.1 &mu;mol/mol) mainly occurring from May to June. The Bay of Brest (France) was investigated in particular because of its long term observations on scallop communities, environmental variables, and high resolution analyses of dissolved Mo in bottom seawater in 2000. In 2000, dissolved Mo exhibited a significant increase in concentration just preceding the maximum ([Mo]/[Ca])<sub>shell</sub> ratio. Both the intense monitoring survey in 2000 and over the 7-year period indicates that the ([Mo]/[Ca])<sub>shell</sub> maximum is directly influenced by spring changes of environmental conditions at the sediment water interface (SWI), occurring subsequent to the intense and periodic spring bloom. Spring maxima of ([Mo]/[Ca])<sub>shell</sub> ratios are closely correlated to the extent of silicic acid and nitrate depletion in seawater between winter and late spring (<i>r</i><sup>2</sup>=0.878 and 0.780, <i>p</i><0.05, <i>n</i>=6) that reflects diatom uptake and productivity in the Bay of Brest. The Mo inputs in bottom waters and subsequent shell enrichment are thus suggested to be directly or indirectly influenced by such biogenic material input at the SWI. The [Mo]/[Ca])<sub>shell</sub> records thus reveal unexpected biogeochemical cycles of Mo influenced by coastal spring productivity, faithfully recorded in scallop shells

    Removal processes for tributyltin during municipal wastewater treatment

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Springer.The fate and behaviour of tributyltin (TBT) at two wastewater treatment works was examined. Both sites had two inlet streams, and each utilised high rate biological filters (biofilters) on one the streams, before treatment of the combined flows on trickling filters, with one having additional tertiary processes, installed to remove ammonia and solids. The study was designed to determine if these processes enhanced the removal of TBT. Degradation of TBT was observed in one of the biofilters, possibly as a result of temperature and hydraulic loading. At the treatment works with tertiary processes, the mass flux showed the overall removal of TBT was 68 %, predominantly due to removal with solids in the primary settlement processes. However, overall removal of 95 % was observed in the conventional trickling filter works with 94 % of this due to biodegradation in the trickling filter. The two works both removed TBT, but at different treatment stages and by different processes. Differences in the form (solubility) of TBT in the influent may have attributed to this, although further understanding of factors controlling degradation would allow for a more complete assessment of the potential of biological processes to remove hazardous compounds from wastewaters.United Utilities PL

    Inorganic Mass Spectrometry

    Get PDF
    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N 2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78 Se and 80 Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N 2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N 2 MIP-IDMS as a sample introduction system (HG-N 2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3σ) of 10 pg mL -1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL -1 by HG-N 2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. It is well-known that Se is an essential element for all mammals. Se deficiency leads to deficiency syndromes, for example, Keshan disease, which is known for cardiac insufficiency that occurred in children and pregnant women in China. Problems also occur if the concentration of Se is too high; for example, gastroenteric disorders, dermatitis, and neurotic disorders are caused by excessive intake of Se. Moreover, it is well-known that the range of permissive intake amounts of Se is very narrow for human beings. Therefore, it is restricted as a toxic element in environmental standards. There are several sources of environmental Se pollution: the processes of Se refinement and the production processes of Se-containing products. For these reasons, the accurate and precise determination of trace levels of Se in environmental and biological samples is required, and studies of Se determination have been reported by several groups. [1][2][3][4][5][6][7][8][9][10][11] Because Ar ICPMS can measure multiple elements at a concentration range from ng mL -1 to fg mL -1 , it has widespread use in the determination of trace elements in various samples. 12-25 However

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Über den Nachweis von Maismehl in Brot

    No full text
    corecore