4,190 research outputs found
Ethics of modifying the mitochondrial genome
Recent preclinical studies have shown the feasibility of specific variants of nuclear transfer to prevent mitochondrial DNA disorders. Nuclear transfer could be a valuable reproductive option for carriers of mitochondrial mutations. A clinical application of nuclear transfer, however, would entail germ-line modification, more specifically a germ-line modification of the mitochondrial genome. One of the most prominent objections against germ-line modification is the fear that it would become possible to alter 'essential characteristics' of a future person, thereby possibly violating the child's right to an open future. As only the nuclear DNA would contain the ingredients for individual characteristics, modification of the mtDNA is often considered less controversial than modification of the nuclear DNA. This paper discusses the tenability of this dichotomy. After having clarified the concept of germ-line modification, it argues that modification of the mtDNA is not substantively different from modification of the nuclear DNA in terms of its effects on the identity of the future person. Subsequently the paper assesses how this conclusion affects the moral evaluation of nuclear transfer to prevent mtDNA disorders. It concludes that the moral acceptability of germ-line modification does not depend on whether it alters the identity of the future child-all germ-line modifications do-but on whether it safeguards the child's right to an open future. If nuclear transfer to prevent mtDNA disorders becomes safe and effective, then dismissing it because it involves germ-line modification is unjustified
The spread of antimalarial drug resistance: A mathematical model with practical implications for ACT drug policies
Most malaria-endemic countries are implementing a change in antimalarial drug policy to artemisinin combination therapy (ACT). The impact of different drug choices and implementation strategies is uncertain. A comprehensive model was constructed incorporating important epidemiological and biological factors and used to illustrate the spread of resistance in low and high transmission settings. The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and that in low transmission areas ACTs slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. A major obstacle to achieving the benefits of high coverage is the current cost of the drugs. This argues strongly for a global subsidy to make ACTs generally available and affordable in endemic areas
Grotius' Doctrine on "adquisitio obligationis per alterum" and its Roots in the Legal Past of Europe
Making sure that clinical trial results make a difference: Operational Research and the Hierarchy of Evidence.
The fluid management of adults with severe malaria
Fluid resuscitation has long been considered a key intervention in the treatment of adults with severe falciparum malaria. Profound hypovolemia is common in these patients and has the potential to exacerbate the acidosis and acute kidney injury that are independent predictors of death. However, new microvascular imaging techniques have shown that disease severity correlates more strongly with obstruction of the microcirculation by parasitized erythrocytes - a process termed sequestration. Fluid loading has little effect on sequestration and increases the risk of complications, particularly pulmonary edema, a condition that can develop suddenly and unpredictably and that is frequently fatal in this population. Accordingly, even if a patient is clinically hypovolemic, if there is an adequate blood pressure and urine output, there may be little advantage in infusing intravenous fluid beyond a maintenance rate of 1 to 2 mL/kg per hour. The optimal agent for fluid resuscitation remains uncertain; significant anemia requires blood transfusion, but colloid solutions may be associated with harm and should be avoided. The preferred crystalloid is unclear, although the use of balanced solutions requires investigation. There are fewer data to guide the fluid management of severe vivax and knowlesi malaria, although a similar conservative strategy would appear prudent
Artemisinin resistance--modelling the potential human and economic costs.
BACKGROUND: Artemisinin combination therapy is recommended as first-line treatment for falciparum malaria across the endemic world and is increasingly relied upon for treating vivax malaria where chloroquine is failing. Artemisinin resistance was first detected in western Cambodia in 2007, and is now confirmed in the Greater Mekong region, raising the spectre of a malaria resurgence that could undo a decade of progress in control, and threaten the feasibility of elimination. The magnitude of this threat has not been quantified. METHODS: This analysis compares the health and economic consequences of two future scenarios occurring once artemisinin-based treatments are available with high coverage. In the first scenario, artemisinin combination therapy (ACT) is largely effective in the management of uncomplicated malaria and severe malaria is treated with artesunate, while in the second scenario ACT are failing at a rate of 30%, and treatment of severe malaria reverts to quinine. The model is applied to all malaria-endemic countries using their specific estimates for malaria incidence, transmission intensity and GDP. The model describes the direct medical costs for repeated diagnosis and retreatment of clinical failures as well as admission costs for severe malaria. For productivity losses, the conservative friction costing method is used, which assumes a limited economic impact for individuals that are no longer economically active until they are replaced from the unemployment pool. RESULTS: Using conservative assumptions and parameter estimates, the model projects an excess of 116,000 deaths annually in the scenario of widespread artemisinin resistance. The predicted medical costs for retreatment of clinical failures and for management of severe malaria exceed US385 million for each year during which failing ACT remained in use as first-line treatment. CONCLUSIONS: These 'ballpark' figures for the magnitude of the health and economic threat posed by artemisinin resistance add weight to the call for urgent action to detect the emergence of resistance as early as possible and contain its spread from known locations in the Mekong region to elsewhere in the endemic world
Infectivity of Chronic Malaria Infections and Its Consequences for Control and Elimination
Assessing the importance of targeting the chronic Plasmodium falciparum malaria reservoir is pivotal as the world moves toward malaria eradication. Through the lens of a mathematical model, we show how, for a given malaria prevalence, the relative infectivity of chronic individuals determines what intervention tools are predicted be the most effective. Crucially, in a large part of the parameter space where elimination is theoretically possible, it can be achieved solely through improved case management. However, there are a significant number of settings where malaria elimination requires not only good vector control but also a mass drug administration campaign. Quantifying the relative infectiousness of chronic malaria across a range of epidemiological settings would provide essential information for the design of effective malaria elimination strategies. Given the difficulties obtaining this information, we also provide a set of epidemiological metrics that can be used to guide policy in the absence of such data
Coma in fatal adult human malaria is not caused by cerebral oedema
BACKGROUND: The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. METHODS: The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. RESULTS: The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). CONCLUSIONS: Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation
Artemisinin resistance in Plasmodium falciparum malaria.
BACKGROUND: Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. METHODS: In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. RESULTS: We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. CONCLUSIONS: P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.
- …
