15,303 research outputs found

    Anti-pheromone as a tool for better exploration of search space

    Get PDF
    Many animals use chemical substances known as pheromones to induce behavioural changes in other members of the same species. The use of pheromones by ants in particular has lead to the development of a number of computational analogues of ant colony behaviour including Ant Colony Optimisation. Although many animals use a range of pheromones in their communication, ant algorithms have typically focused on the use of just one, a substance that encourages succeeding generations of (artificial) ants to follow the same path as previous generations. Ant algorithms for multi-objective optimisation and those employing multiple colonies have made use of more than one pheromone, but the interactions between these different pheromones are largely simple extensions of single criterion, single colony ant algorithms. This paper investigates an alternative form of interaction between normal pheromone and anti-pheromone. Three variations of Ant Colony System that apply the anti-pheromone concept in different ways are described and tested against benchmark travelling salesman problems. The results indicate that the use of anti-pheromone can lead to improved performance. However, if anti-pheromone is allowed too great an influence on ants' decisions, poorer performance may result

    Applying ACO To Large Scale TSP Instances

    Full text link
    Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique

    Continuous function optimization using hybrid ant colony approach with orthogonal design scheme

    Get PDF
    A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by choosing one appropriate node from each IVS by ant; d) with the ODS, the best solved path is further improved. The proposed algorithm has been successfully applied to 10 benchmark test functions. The performance and a comparison with CACO and FEP have been studied

    The exact radiation-reaction equation for a classical charged particle

    Full text link
    An unsolved problem of classical mechanics and classical electrodynamics is the search of the exact relativistic equations of motion for a classical charged point-particle subject to the force produced by the action of its EM self-field. The problem is related to the conjecture that for a classical charged point-particle there should exist a relativistic equation of motion (RR equation) which results both non-perturbative, in the sense that it does not rely on a perturbative expansion on the electromagnetic field generated by the charged particle and non-asymptotic, i.e., it does not depend on any infinitesimal parameter. In this paper we intend to propose a novel solution to this well known problem, and in particular to point out that the RR equation is necessarily variational. The approach is based on two key elements: 1) the adoption of the relativistic hybrid synchronous Hamilton variational principle recently pointed out (Tessarotto et al, 2006). Its basic feature is that it can be expressed in principle in terms of arbitrary "hybrid" variables (i.e., generally non-Lagrangian and non-Hamiltonian variables); 2) the variational treatment of the EM self-field, taking into account the exact particle dynamics.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    Memory-based immigrants for ant colony optimization in changing environments

    Get PDF
    Copyright @ 2011 SpringerAnt colony optimization (ACO) algorithms have proved that they can adapt to dynamic optimization problems (DOPs) when they are enhanced to maintain diversity. DOPs are important due to their similarities to many real-world applications. Several approaches have been integrated with ACO to improve their performance in DOPs, where memory-based approaches and immigrants schemes have shown good results on different variations of the dynamic travelling salesman problem (DTSP). In this paper, we consider a novel variation of DTSP where traffic jams occur in a cyclic pattern. This means that old environments will re-appear in the future. A hybrid method that combines memory and immigrants schemes is proposed into ACO to address this kind of DTSPs. The memory-based approach is useful to directly move the population to promising areas in the new environment by using solutions stored in the memory. The immigrants scheme is useful to maintain the diversity within the population. The experimental results based on different test cases of the DTSP show that the memory based immigrants scheme enhances the performance of ACO in cyclic dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/2

    Solving Optimization Problems by the Public Goods Game

    Get PDF
    This document is the Accepted Manuscript version of the following article: Marco Alberto Javarone, ‘Solving optimization problems by the public goods game’, The European Physical Journal B, 90:17, September 2017. Under embargo. Embargo end date: 18 September 2018. The final, published version is available online at doi: https://doi.org/10.1140/epjb/e2017-80346-6. Published by Springer Berlin Heidelberg.We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.Peer reviewedFinal Accepted Versio

    Vector bundles on the projective line and finite domination of chain complexes

    Get PDF
    Finitely dominated chain complexes over a Laurent polynomial ring in one indeterminate are characterised by vanishing of their Novikov homology. We present an algebro-geometric approach to this result, based on extension of chain complexes to sheaves on the projective line. We also discuss the K-theoretical obstruction to extension.Comment: v1: 11 page

    Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Get PDF
    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties). We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations

    Constraining CP violation in neutral meson mixing with theory input

    Full text link
    There has been a lot of recent interest in the experimental hints of CP violation in B_{d,s}^0 mixing, which would be a clear signal of beyond the standard model physics (with higher significance). We derive a new relation for the mixing parameters, which allows clearer interpretation of the data in models in which new physics enters in M_12 and/or \Gamma_12. Our results imply that the central value of the D\O\ measurement of the semileptonic CP asymmetry in B_{d,s}^0 decay is not only in conflict with the standard model, but in a stronger tension with data on \Delta\Gamma_s than previously appreciated. This result can be used to improve the constraint on \Delta\Gamma or A_SL, whichever is less precisely measured.Comment: 5 pages, 2 figures, informed of prior derivation of eq. (21), title modifie
    corecore