31 research outputs found

    Near infrared reflectance spectroscopy for the determination of free gossypol in cottonseed meal

    Get PDF
    Gossypol is a toxic polyphenolic compound produced by the pigment glands of the cotton plant. The free gossypol content of cottonseed meal (CSM) is commonly determined by the American Oil Chemists’ Society (AOCS) wet chemistry method. The AOCS method, however, laboratory-intensive, time-consuming, and therefore, not practical for quick field analyses. To determine if the free gossypol content of CSM could be predicted by near infrared reflectance spectroscopy (NIRS), CSM samples were collected from all over the world. All CSM samples were ground and a portion of each analyzed for free gossypol by the AOCS procedure (reference data) and by NIRS (reflectance data). Both reflectance and reference data were combined in calibration. The coefficient of determination (r2) and standard error of prediction (SEP) were used to assess the calibration accuracy. The r2 was 0.728, and the SEP was 0.034 for the initial calibration that included samples from all over the world. However, the r2 and SEP improved to 0.921 and 0.014, respectively, if the calibration was made using CSM samples only from the United States. These results indicate that a general prediction equation can be developed to predict the free gossypol content of CSM by NIRS. From a practical standpoint, NIRS technology provides a method for quickly assessing whether a particular batch of CSM has a free gossypol content low enough to be suitable for use in poultry diets.This research was supported in part by grant 05-635GA from the Georgian Cotton Commission, Perry, G

    The Physics of the B Factories

    Get PDF

    Synergistic enhancement of beta-lactam antibiotics by modified tunicamycin analogs TunR1 and TunR2

    No full text
    The β-lactams are the most widely used group of antibiotics in human health and agriculture, but this is under threat due to the persistent rise of pathogenic resistance. Several compounds, including tunicamycin (TUN), can enhance the antibacterial activity of the β-lactams to the extent of overcoming resistance, but the mammalian toxicity of TUN has precluded its use in this role. Selective hydrogenation of TUN produces modified compounds (TunR1 and TunR2), which retain the enhancement of β-lactams while having much lower mammalian toxicity. Here we show that TunR1 and TunR2 enhance the antibacterial activity of multiple β-lactam family members, including penems, cephems, and third-generation penicillins, to a similar extent as does the native TUN. Eleven of the β-lactams tested were enhanced from 2 to >256-fold against Bacillus subtilis, with comparable results against a penicillin G-resistant strain. The most significant enhancements were obtained with third-generation aminothiazolidyl cephems, including cefotaxime, ceftazidime, and cefquinome. These results support the potential of low toxicity tunicamycin analogs (TunR1 and TunR2) as clinically valid, synergistic enhancers for a broad group of β-lactam antibiotics
    corecore