2,653 research outputs found

    Natural history contributions of the University of Glasgow Exploration Society to Scotland and the World

    Get PDF
    Expeditions with a natural history focus have been organised by University of Glasgow staff and students since the 1930s. The educational benefits of such expeditions to students have been reported by Harper et al. ( Journal of Biological Education 51, 3- 16; 2017). Here, we present a short history of these expeditions, concentrating on their scientific achievements. In addition to expedition reports, a large number of PhD theses, masters and honours project reports and scientific papers have been based on expedition work. Many biological specimens have been deposited in museums, including some new species. We provide case histories of four expedition locations, to demonstrate the variety of work done, and the value of returning many times to the same place: Scotland, Trinidad and Tobago, North Cyprus and Ecuador. A major problem for expeditions is funding. For many years, the Carnegie Trust for the Universities of Scotland ran a funding stream that was crucial to the viability of Scottish university expeditions, but this has sadly now closed. For Glasgow University expeditions, the Blodwen Lloyd Binns Bequest has provided a reliable source since 1994, and we hope that it will continue to do so

    MRI-based Surgical Planning for Lumbar Spinal Stenosis

    Full text link
    The most common reason for spinal surgery in elderly patients is lumbar spinal stenosis(LSS). For LSS, treatment decisions based on clinical and radiological information as well as personal experience of the surgeon shows large variance. Thus a standardized support system is of high value for a more objective and reproducible decision. In this work, we develop an automated algorithm to localize the stenosis causing the symptoms of the patient in magnetic resonance imaging (MRI). With 22 MRI features of each of five spinal levels of 321 patients, we show it is possible to predict the location of lesion triggering the symptoms. To support this hypothesis, we conduct an automated analysis of labeled and unlabeled MRI scans extracted from 788 patients. We confirm quantitatively the importance of radiological information and provide an algorithmic pipeline for working with raw MRI scans

    The biogeographic origin of a radiation of trees in Madagascar: implications for the assembly of a tropical forest biome

    Get PDF
    Abstract Background Madagascar’s rain forests are characterized by extreme and uneven patterns of species richness and endemicity, the biogeographic and evolutionary origins of which are poorly understood. Methods Here we use a time-calibrated phylogeny of a dominant group of trees in Madagascar’s eastern rain forests, Canarium, and related Burseraceae (Canarieae), to test biogeographic hypotheses regarding the origin and radiation of the flora of this unique biome. Results Our findings strongly support the monophyly of Malagasy Canarium, suggesting that this clade represents a previously undocumented in situ radiation. Contrary to expectations of dispersal from Africa during the Oligocene, concurrent with the formation of Madagascar’s rain forest biome, our analyses support a late Miocene origin for Malagasy Canarium, probably by long distance dispersal from Southeast Asia. Discussion Our study illustrates the importance of considering long distance dispersal as a viable explanation for clades with pantropical distributions diversifying subsequent to the Oligocene, and it highlights the formation of the Indo-Australian Archipelago and associated fast-moving equatorial surface currents, suggesting an under-appreciated evolutionary link among tropical centers of endemism. Conclusions We postulate that the relatively recent establishment and radiation of Canarium in Madagascar may have been facilitated by the highly stochastic climates associated with these forest ecosystems. </jats:sec

    On the Theory of Evolution Versus the Concept of Evolution: Three Observations

    Get PDF
    Here we address three misconceptions stated by Rice et al. in their observations of our article Paz-y-Miño and Espinosa (Evo Edu Outreach 2:655–675, 2009), published in this journal. The five authors titled their note “The Theory of Evolution is Not an Explanation for the Origin of Life.” First, we argue that it is fallacious to believe that because the formulation of the theory of evolution, as conceived in the 1800s, did not include an explanation for the origin of life, nor of the universe, the concept of evolution would not allow us to hypothesize the possible beginnings of life and its connections to the cosmos. Not only Stanley Miller’s experiments of 1953 led scientists to envision a continuum from the inorganic world to the origin and diversification of life, but also Darwin’s own writings of 1871. Second, to dismiss the notion of Rice et al. that evolution does not provide explanations concerning the universe or the cosmos, we identify compelling scientific discussions on the topics: Zaikowski et al. (Evo Edu Outreach 1:65–73, 2008), Krauss (Evo Edu Outreach 3:193–197, 2010), Peretó et al. (Orig Life Evol Biosph 39:395–406, 2009) and Follmann and Brownson (Naturwissenschaften 96:1265–1292, 2009). Third, although we acknowledge that the term Darwinism may not be inclusive of all new discoveries in evolution, and also that creationists and Intelligent Designers hijack the term to portray evolution as ideology, we demonstrate that there is no statistical evidence suggesting that the word Darwinism interferes with public acceptance of evolution, nor does the inclusion of the origin of life or the universe within the concept of evolution. We examine the epistemological and empirical distinction between the theory of evolution and the concept of evolution and conclude that, although the distinction is important, it should not compromise scientific logic

    Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes

    Get PDF
    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable
    corecore