279 research outputs found
Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves
peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine.
Results
There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups.
Conclusion
Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak
Male reproductive health and environmental xenoestrogens
EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright.
Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright.
Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
Influence of surgical approach on component positioning in primary total hip arthroplasty
Background: Minimal invasive surgery (MIS) has gained growing popularity in total hip arthroplasty (THA) but concerns exist regarding component malpositioning. The aim of the present study was to evaluate femoral and acetabular component positioning in primary cementless THA comparing a lateral to a MIS anterolateral approach. Methods: We evaluated 6 week postoperative radiographs of 52 hips with a minimal invasive anterolateral approach compared to 54 hips with a standard lateral approach. All hips had received the same type of implant for primary cementless unilateral THA and had a healthy hip contralaterally. Results: Hip offset was equally restored comparing both approaches. No influence of the approach was observed with regard to reconstruction of acetabular offset, femoral offset, vertical placement of the center of rotation, stem alignment and leg length discrepancy. However, with the MIS approach, a significantly higher percentage of cups (38.5 %) was malpositioned compared to the standard approach (16.7 %) (p = 0.022). Conclusions: The MIS anterolateral approach allows for comparable reconstruction of stem position, offset and center of rotation compared to the lateral approach. However, surgeons must be aware of a higher risk of cup malpositioning for inclination and anteversion using the MIS anterolateral approach
IPCC reasons for concern regarding climate change risks
The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions
Review for the generalist: evaluation of low back pain in children and adolescents
Back pain is common in children and adolescents. Most cases of back pain are non-specific and self-limiting. In children and adolescents, pain is usually related to the posterior elements of the spine and disc-related problems are rare. Serious pathology, including malignancy and infection needs to be excluded. Evaluation and management is challenging and requires a thorough history and physical exam, and understanding of the immature skeleton. Diagnostic imaging is useful in the evaluation of a child or adolescent with low back pain and can help guide management. This article will review common causes of back pain in the pediatric population
VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation
<p>Abstract</p> <p>Background</p> <p>Aortic stenosis (AS) affects 3 percent of persons older than 65 years and leads to greater morbidity and mortality than other cardiac valve diseases. Surgery with aortic valve replacement (AVR) for severe symptomatic AS is currently the only treatment option. Unfortunately, in patients with poor ventricular function, the mortality and long-term outcome is unsatisfied, and only a minority of these patients could bear surgery. Our previous studies demonstrated that vascular endothelial growth factor (VEGF) protects cardiac function in myocardial infarction model through classic VEGF-PI3k-Akt and unclear mitochondrial anti-apoptosis pathways; promoting cardiomyocyte (CM) proliferation as well. The present study was designed to test whether pre-operative treatment with VEGF improves AS-induced cardiac dysfunction, to be better suitable for AVR, and its potential mechanism.</p> <p>Methods</p> <p>Adult male mice were subjected to AS or sham operation. Two weeks later, adenoviral VEGF (Ad-VEGF), enhanced green fluorescence protein (Ad-EGFP, as a parallel control) or saline was injected into left ventricle free wall. Two weeks after delivery, all mice were measured by echocardiography and harvested for further detection.</p> <p>Results</p> <p>AS for four weeks caused cardiac hypertrophy and left ventricular dysfunction. VEGF treatment increased capillary density, protected mitochondrial function, reduced CMs apoptosis, promoted CMs proliferation and eventually preserved cardiac function.</p> <p>Conclusions</p> <p>Our findings indicate that VEGF could repair AS-induced transition from compensatory cardiac hypertrophy to heart failure.</p
Getting inside acupuncture trials - Exploring intervention theory and rationale
<p>Abstract</p> <p>Background</p> <p>Acupuncture can be described as a complex intervention. In reports of clinical trials the mechanism of acupuncture (that is, the process by which change is effected) is often left unstated or not known. This is problematic in assisting understanding of how acupuncture might work and in drawing together evidence on the potential benefits of acupuncture. Our aim was to aid the identification of the assumed mechanisms underlying the acupuncture interventions in clinical trials by developing an analytical framework to differentiate two contrasting approaches to acupuncture (traditional acupuncture and Western medical acupuncture).</p> <p>Methods</p> <p>Based on the principles of realist review, an analytical framework to differentiate these two contrasting approaches was developed. In order to see how useful the framework was in uncovering the theoretical rationale, it was applied to a set of trials of acupuncture for fatigue and vasomotor symptoms, identified from a wider literature review of acupuncture and early stage breast cancer.</p> <p>Results</p> <p>When examined for the degree to which a study demonstrated adherence to a theoretical model, two of the fourteen selected studies could be considered TA, five MA, with the remaining seven not fitting into any recognisable model. When examined by symptom, five of the nine vasomotor studies, all from one group of researchers, are arguably in the MA category, and two a TA model; in contrast, none of the five fatigue studies could be classed as either MA or TA and all studies had a weak rationale for the chosen treatment for fatigue.</p> <p>Conclusion</p> <p>Our application of the framework to the selected studies suggests that it is a useful tool to help uncover the therapeutic rationale of acupuncture interventions in clinical trials, for distinguishing between TA and MA approaches and for exploring issues of model validity. English language acupuncture trials frequently fail to report enough detail relating to the intervention. We advocate using this framework to aid reporting, along with further testing and refinement of the framework.</p
An economic analysis of usual care and acupuncture collaborative treatment on chronic low back pain: A Markov model decision analysis
- …
