715 research outputs found

    The effect of railway local irregularities on ground vibration

    Get PDF
    The environmental effects of ground-borne vibrations generated due to localised railway defects is a growing concern in urban areas. Frequency domain modelling approaches are well suited for predicting vibration levels on standard railway lines due to track periodicity. However, when considering individual, non-periodic, localised defects (e.g. a rail joint), frequency domain modelling becomes challenging. Therefore in this study, a previously validated, time domain, three-dimensional ground vibration prediction model is modified to analyse such defects. A range of different local (discontinuous) rail and wheel irregularity are mathematically modelled, including: rail joints, switches, crossings and wheel flats. Each is investigated using a sensitivity analysis, where defect size and vehicle speed is varied. To quantify the effect on railroad ground-borne vibration levels, a variety of exposure–response relationships are analysed, including: peak particle velocity, maximum weighted time-averaged velocity and weighted decibel velocity. It is shown that local irregularities cause a significant increase in vibration in comparison to a smooth track, and that the vibrations can propagate to greater distances from the line. Furthermore, the results show that step-down joints generate the highest levels of vibration, whereas wheel flats generate much lower levels. It is also found that defect size influences vibration levels, and larger defects cause greater vibration. Lastly, it is shown that for different defect types, train speed effects are complex, and may cause either an increase or decrease in vibration levels

    Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study

    Get PDF
    This paper analyses the influence of rolling stock dynamics on ground-borne vibration levels. Four vehicle types (Thalys, German ICE, Eurostar, and Belgian freight trains) are investigated using a multibody approach. First, a numerical model is constructed using a flexible track on which the vehicles traverse at constant speed. A two-step approach is used to simulate ground wave propagation which is analysed at various distances from the track. This approach offers a new insight because the train and track are fully coupled. Therefore rail unevenness or other irregularity on the rail/wheel surface can be accurately modelled. Vehicle speed is analysed and the frequency spectrums of track and soil responses are also assessed to investigate different excitation mechanisms, such as carriage periodicities. To efficiently quantify train effects, a new (normalised) metric, defined as the ratio between the peak particle velocity and the nominal axle load, is introduced for a comparison of dynamic excitation. It is concluded that rolling stock dynamics have a significant influence on the free field vibrations at low frequencies, whereas high frequencies are dominated by the presence of track unevenness

    HeliRail: A railway-tube transportation system concept

    Get PDF
    Helirail is an energy efficient mass transit transportation system concept, which combines developments in low-pressure tube transport with existing high-speed railway infrastructure. It addresses the problem that, currently at low speeds, steel wheel railways are an energy efficient transport mode, however at high speeds, >80% of energy is used overcoming drag. This means minimising these resistances presents a high-impact opportunity for reducing railway energy consumption. To reduce resistance, HeliRail consists of an airtight tube-track structure that allows existing steel-wheel trains to travel on existing railway corridors where slab-track is suitable, with minimal drag. The running environment is low-density heliox gas, held inside lightweight tubes, slightly below atmospheric pressure to minimise species transport. HeliRail captures this energy saving as an operational reduction, thus improving the energy efficiency of high speed rail by 60%. On a high capacity route, annually this could save enough energy to power 140,000 homes. Deploying Helirail on an existing line does not increase train cruising speeds, however a secondary benefit is journey time reduction, achieved using a small part of the energy saving for improved train acceleration. Unlike previous evacuated tube transportation embodiments, the system is interoperable with traditional rail lines/trains meaning vehicles can pass through HeliRail sections and onto traditional steel-rail networks. This also reduces land-purchase requirements. Further benefits include improved safety compared to vacuum transportation and fewer service disruptions compared to rail. Capital cost is low compared to a new rail or pressurised transportation line, and is recovered after a period competitive with renewable energy technologies

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)

    Peptidases compartmentalized to the Ascaris suum intestinal lumen and apical intestinal membrane

    Get PDF
    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine

    An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    Get PDF
    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades

    Settlement behaviour of hybrid asphalt-ballast railway tracks

    Get PDF
    The use of structural asphalt layers inside ballasted railway tracks is attractive because it can increase track bending stiffness. Therefore, for the first time, this paper investigates the long-term settlement characteristics of asphaltic track in the presence of a subgrade stiffness transition zone. Phased load cyclic compression laboratory tests are performed on a large-scale hybrid asphalt-ballast track, supported by subgrade with varying stiffness. It is found that an asphaltic layer acts as a bridge to shield the subgrade from high stresses. It is also found that the asphalt reduces track settlement, and is particularly effective when subgrade stiffness is low

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Geodynamics of very high speed transport systems

    Get PDF
    This work reveals the existence of a new dynamic load amplification mechanism due to ground surface loads. It is caused by the interaction between a moving vehicle's axle configuration and the vibration characteristics of the underlying soil-guideway system. It is more dominant than the traditionally considered ‘critical velocity’ dynamic amplification mechanism of the guideway-ground structure, and is of relevance to very high speed transport systems such as high speed rail. To demonstrate the new amplification mechanism, first a numerical model is developed, capable of simulating ground-wave propagation in the presence of a series of discrete high speed loads moving on a soil-guideway system. The model couples analytical equations for the transportation system guideway with the thin-layer element method for ground simulation. As a practical example, it is validated using high speed railroad field data and then used to analyse the response of a generalised single moving load at high speed. Next the effect of multiple discrete vehicle-guideway contact points is studied and it is shown that dynamic amplification is highly sensitive to load spacing when the speed is greater than the critical velocity. In particular, large resonant effects occur when the axle/magnet loading frequency and the propagating wave vibration frequency of the soil-guideway structure are equivalent. As an example, it is shown that for an individual case, although critical velocity might increase displacements by 50–100%, for the same scenario, axle configuration can increase displacements by 400%. It is also shown that resonance is sensitive to the total number of loading points and the individual frequencies excited by various spacings. The findings are important for current (e.g. high speed railway) and potential future (e.g. hyperloop) transport systems required to operate at speeds either close-to, or greater than the critical velocity of their supporting guideway-soil structure. In such situations, it is important to design the vehicle and supporting structure(s) as a combined system, rather than in isolation

    Resection of the liver for colorectal carcinoma metastases - A multi-institutional study of long-term survivors

    Get PDF
    In this review of a collected series of patients undergoing hepatic resection for colorectal metastases, 100 patients were found to have survived greater than five years from the time of resection. Of these 100 long-term survivors, 71 remain disease-free through the last follow-up, 19 recurred prior to five years, and ten recurred after five years. Patient characteristics that may have contributed to survival were examined. Procedures performed included five trisegmentectomies, 32 lobectomies, 16 left lateral segmentectomies, and 45 wedge resections. The margin of resection was recorded in 27 patients, one of whom had a positive margin, nine of whom had a less than or equal to 1-cm margin, and 17 of whom had a greater than 1-cm margin. Eighty-one patients had a solitary metastasis to the liver, 11 patients had two metastases, one patient had three metastases, and four patients had four metastases. Thirty patients had Stage C primary carcinoma, 40 had Stage B primary carcinoma, and one had Stage A primarycarcinoma. The disease-free interval from the time of colon resection to the time of liver resection was less than one year in 65 patients, and greater than one year in 34 patients. Three patients had bilobar metastases. Four of the patients had extrahepatic disease resected simultaneously with the liver resection. Though several contraindications to hepatic resection have been proposed in the past, five-year survival has been found in patients with extrahepatic disease resected simultaneously, patients with bilobar metastases, patients with multiple metastases, and patients with positive margins. Five-year disease-free survivors are also present in each of these subsets. It is concluded that five-year survival is possible in the presence of reported contraindications to resection, and therefore that the decision to resect the liver must be individualized. © 1988 American Society of Colon and Rectal Surgeons
    corecore