140 research outputs found
Identifying road user classes based on repeated trip behaviour using Bluetooth data
Analysing the repeated trip behaviour of travellers, including trip frequency and intrapersonal variability, can provide insights into traveller needs, flexibility and knowledge of the network, as well as inputs for models including learning and/or behaviour change. Data from emerging data sources provide new opportunities to examine repeated trip making on the road network. Point-to-point sensor data, for example from Bluetooth detectors, is collected using fixed detectors installed next to roads which can record unique identifiers of passing vehicles or travellers which can then be matched across space and time. Such data is used in this research to segment road users based on their repeated trip making behaviour, as has been done in public transportation research using smart card data to understand different categories of users. Rather than deciding on traveller segmentation based on a priori assumptions, the method provides a data driven approach to cluster together travellers who have similar trip regularity and variability between days. Measures which account for the strengths and weaknesses of point-to-point sensor data are presented for (a) spatial variability, using Sequence Alignment, and (b) time of day variability, using Model Based Clustering. The proposed method is also applied to one year of data from 23 fixed Bluetooth detectors in a town in northwest England. The data consists of almost 7.5 million trips made by over 300,000 travellers. Applying the proposed methods allows three traveller user classes to be identified: infrequent, frequent, and very frequent. Interestingly, the spatial and time of day variability characteristics of each user class are distinct and are not linearly correlated with trip frequency. The frequent travellers are observed 1–5 times per week on average and make up 57% of the trips recorded during the year. Focusing on these frequent travellers, it is shown that these can be further separated into those with high spatial and time of day variability and those with low spatial and time of day variability. Understanding the distribution of travellers and trips across these user classes, as well as the repeated trip characteristics of each user class, can inform further data collection and the development of policies targeting the needs of specific travellers
Estimation of Parameters of Network Equilibrium Models: A Maximum Likelihood Method and Statistical Properties of Network Flow
Estimation of the parameters in network equilibrium models, including OD matrix elements, is essential when applying the models to real-world net-works. Link flow data are convenient for estimating parameters because it is rela-tively easy for us to obtain them. In this study, we propose a maximum likelihood method for estimating parameters of network equilibrium models using link flow data, and derive first and second derivatives of the likelihood function under the equilibrium constraint. Using the likelihood function and its derivatives, t-values and other statistical indices are provided to examine the confidence interval of es-timated parameters and the model’s goodness-of-fit. Also, we examine which conditions are needed for consistency, asymptotic efficiency, and asymptotic nor-mality for the maximum likelihood estimators with non-I.I.D. link flow data. In order to investigate the validity and applicability, the proposed ML method is ap-plied to a simple network and the road network in Kanazawa City, Japan
Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data
Path Size Logit route choice models attempt to capture the correlation between routes by including correction terms within the route utility functions. This provides a convenient closed-form solution for implementation in traffic network models. The path size terms measure distinctiveness of routes; a route is penalised based on the number of other routes sharing its links, and the costs of those shared links. Typically, real road networks have many very long routes that should be considered unrealistic. Such unrealistic routes are problematic for the Path Size Logit (PSL) model because they negatively impact the choice probabilities of realistic routes when links are shared. The Generalised Path Size Logit (GPSL) model attempts to address this problem by weighting the contributions of routes to path size terms according to the ratio of route travel costs. However, the GPSL model is not internally consistent in how it defines routes as being unrealistic: the path size terms consider only travel cost, whereas the route choice probability relation considers disutility including the correction term.
To solve these challenges, this paper formulates a new internally consistent Adaptive Path Size Logit (APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities, ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice probabilities. The APSL route choice probability relation is an implicit function, naturally expressed as a fixed-point problem. A proof is provided for the guaranteed existence of solutions, as well as conditions for the uniqueness of solutions. A Maximum Likelihood Estimation procedure is given for estimating the APSL model with tracked route observation data, and this procedure is investigated in a simulation study where it is shown it is generally possible to reproduce assumed true parameters. APSL is then estimated using real tracked route GPS data on a large-scale network, and results are compared with other PSL models
Avoidable mortality across Canada from 1975 to 1999
BACKGROUND: The concept of 'avoidable' mortality (AM) has been proposed as a performance measure of health care systems. In this study we examined mortality in five geographic regions of Canada from 1975 to 1999 for previously defined avoidable disease groups that are amenable to medical care and public health. These trends were compared to mortality from other causes. METHODS: National and regional age-standardized mortality rates for ages less than 65 years were estimated for avoidable and other causes of death for consecutive periods (1975–1979, 1980–1985, 1985–1989, 1990–1994, and 1995–1999). The proportion of all-cause mortality attributable to avoidable causes was also determined. RESULTS: From 1975–1979 to 1995–1999, the AM decrease (46.9%) was more pronounced compared to mortality from other causes (24.9%). There were persistent regional AM differences, with consistently lower AM in Ontario and British Columbia compared to the Atlantic, Quebec, and Prairies regions. This trend was not apparent when mortality from other causes was examined. Injuries, ischaemic heart disease, and lung cancer strongly influenced the overall AM trends. CONCLUSION: The regional differences in mortality for ages less than 65 years was attributable to causes of death amenable to medical care and public health, especially from causes responsive to public health
Immunological evaluation of human immunedeficiency virus infected individuals by flow cytometry
Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes
The emergence of multicellular animals could only take place once evolution had produced molecular mechanisms for cell adhesion and communication. Today, all metazoans express integrin-type adhesion receptors and receptors for growth factors. Integrins recognize extracellular matrix proteins and respective receptors on other cells and, following ligand binding, can activate the same cellular signaling pathways that are regulated by growth factor receptors. Recent reports have indicated that the two receptor systems also collaborate in many other ways. Here, we review the present information concerning the role of integrins as assisting growth factor receptors and the interplay between the receptors in cell signaling and in the orchestration of receptor recycling
Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the
quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with
transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured
by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is
observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates
jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for
low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p
collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured
for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as
well as medium-response effects
Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Systematic study of nuclear effects in p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV using π 0 production
The PHENIX collaboration presents a systematic study of inclusive π
0 production from p+p,
p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV. Measurements were performed
with different centrality selections as well as the total inelastic, 0%–100%, selection for all collision
systems. For 0%–100% collisions, the nuclear-modification factors, RxA, are consistent with unity
for pT above 8 GeV/c, but exhibit an enhancement in peripheral collisions and a suppression in
central collisions. The enhancement and suppression characteristics are similar for all systems for
the same centrality class. It is shown that for high-pT -π
0 production, the nucleons in the d and
3He interact mostly independently with the Au nucleus and that the counter intuitive centrality
dependence is likely due to a physical correlation between multiplicity and the presence of a hard
scattering process. These observations disfavor models where parton energy loss has a significant
contribution to nuclear modifications in small systems. Nuclear modifications at lower pT resemble
the Cronin effect – an increase followed by a peak in central or inelastic collisions and a plateau in
peripheral collisions. The peak height has a characteristic ordering by system size as p+Au > d+Au
>
3He+Au > p+Al. For collisions with Au ions, current calculations based on initial state cold
nuclear matter effects result in the opposite order, suggesting the presence of other contributions to
nuclear modifications, in particular at lower pT
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …
