419 research outputs found
Laser treatment in diabetic retinopathy
Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel
Toward a new cognitive neuroscience: Modeling natural brain dynamics
Decades of brain imaging experiments have revealed important insights into the architecture of the human brain and the detailed anatomic basis for the neural dynamics supporting human cognition. However, technical restrictions of traditional brain imaging approaches including functional magnetic resonance tomography (fMRI), positron emission tomography (PET), and magnetoencephalography (MEG) severely limit participants' movements during experiments. As a consequence, our knowledge of the neural basis of human cognition is rooted in a dissociation of human cognition from what is arguably its foremost, and certainly its evolutionarily most determinant function, organizing our behavior so as to optimize its consequences in our complex, multi-scale, and ever-changing environment. The concept of natural cognition, therefore, should not be separated from our fundamental experience and role as embodied agents acting in a complex, partly unpredictable world. To gain new insights into the brain dynamics supporting natural cognition, we must overcome restrictions of traditional brain imaging technology. First, the sensors used must be lightweight and mobile to allow monitoring of brain activity during free participant movements. New hardware technology for electroencephalography (EEG) and near infrared spectroscopy (NIRS) allows recording electrical and hemodynamic brain activity while participants are freely moving. New data-driven analysis approaches must allow separation of signals arriving at the sensors from the brain and from non-brain sources (neck muscles, eyes, heart, the electrical environment, etc.). Independent component analysis (ICA) and related blind source separation methods allow separation of brain activity from non-brain activity from data recorded during experimental paradigms that stimulate natural cognition. Imaging the precisely timed, distributed brain dynamics that support all forms of our motivated actions and interactions in both laboratory and real-world settings requires new modes of data capture and of data processing. Synchronously recording participants’ motor behavior, brain activity, and other physiology, as well as their physical environment and external events may be termed mobile brain/body imaging ('MoBI'). Joint multi-stream analysis of recorded MoBI data is a major conceptual, mathematical, and data processing challenge. This Research Topic is one result of the first international MoBI meeting in Delmenhorst Germany in September 2013. During an intense workshop researchers from all over the world presented their projects and discussed new technological developments and challenges of this new imaging approach. Several of the presentations are compiled in this Research Topic that we hope may inspire new research using the MoBI paradigm to investigate natural cognition by recording and analyzing the brain dynamics and behavior of participants performing a wide range of naturally motivated actions and interactions
Locomotor adaptation to a powered ankle-foot orthosis depends on control method
<p>Abstract</p> <p>Background</p> <p>We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.</p> <p>Methods</p> <p>Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.</p> <p>Results</p> <p>During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.</p> <p>Conclusion</p> <p>These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.</p
Cognition in action: Imaging brain/body dynamics in mobile humans
We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method. Copyright © 2011 by Walter de Gruyter, Berlin, Boston
A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot
This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects
Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude
<p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p
The exoskeletons are here
It is a fantastic time for the field of robotic exoskeletons. Recent advances in actuators, sensors, materials, batteries, and computer processors have given new hope to creating the exoskeletons of yesteryear's science fiction. While the most common goal of an exoskeleton is to provide superhuman strength or endurance, scientists and engineers around the world are building exoskeletons with a wide range of diverse purposes. Exoskeletons can help patients with neurological disabilities improve their motor performance by providing task specific practice. Exoskeletons can help physiologists better understand how the human body works by providing a novel experimental perturbation. Exoskeletons can even help power mobile phones, music players, and other portable electronic devices by siphoning mechanical work performed during human locomotion. This special thematic series on robotic lower limb exoskeletons and orthoses includes eight papers presenting novel contributions to the field. The collective message of the papers is that robotic exoskeletons will contribute in many ways to the future benefit of humankind, and that future is not that distant
Mechanical Work as an Indirect Measure of Subjective Costs Influencing Human Movement
To descend a flight of stairs, would you rather walk or fall? Falling seems to have some obvious disadvantages such as the risk of pain or injury. But the preferred strategy of walking also entails a cost for the use of active muscles to perform negative work. The amount and distribution of work a person chooses to perform may, therefore, reflect a subjective valuation of the trade-offs between active muscle effort and other costs, such as pain. Here we use a simple jump landing experiment to quantify the work humans prefer to perform to dissipate the energy of landing. We found that healthy normal subjects (N = 8) preferred a strategy that involved performing 37% more negative work than minimally necessary (P<0.001) across a range of landing heights. This then required additional positive work to return to standing rest posture, highlighting the cost of this preference. Subjects were also able to modulate the amount of landing work, and its distribution between active and passive tissues. When instructed to land softly, they performed 76% more work than necessary (P<0.001), with a higher proportion from active muscles (89% vs. 84%, P<0.001). Stiff-legged landings, performed by one subject for demonstration, exhibited close to the minimum of work, with more of it performed passively through soft tissue deformations (at least 30% in stiff landings vs. 16% preferred). During jump landings, humans appear not to minimize muscle work, but instead choose to perform a consistent amount of extra work, presumably to avoid other subjective costs. The degree to which work is not minimized may indirectly quantify the relative valuation of costs that are otherwise difficult to measure
The Evolution of Enzyme Specificity in the Metabolic Replicator Model of Prebiotic Evolution
The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness
Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton
- …
