3,021 research outputs found

    The Dark Side of the Electroweak Phase Transition

    Get PDF
    Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, light states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO

    Association of Clinical Factors and Therapeutic Strategies With Improvements in Survival Following Non-ST-Elevation Myocardial Infarction, 2003-2013.

    Get PDF
    Importance: International studies report a decline in mortality following non–ST-elevation myocardial infarction (NSTEMI). Whether this is due to lower baseline risk or increased utilization of guideline-indicated treatments is unknown. Objective: To determine whether changes in characteristics of patients with NSTEMI are associated with improvements in outcomes. Design, Setting, and Participants: Data on patients with NSTEMI in 247 hospitals in England and Wales were obtained from the Myocardial Ischaemia National Audit Project between January 1, 2003, and June 30, 2013 (final follow-up, December 31, 2013). Exposures: Baseline demographics, clinical risk (GRACE risk score), and pharmacological and invasive coronary treatments. Main Outcomes and Measures: Adjusted all-cause 180-day postdischarge mortality time trends estimated using flexible parametric survival modeling. Results: Among 389 057 patients with NSTEMI (median age, 72.7 years [IQR, 61.7-81.2 years]; 63.1% men), there were 113 586 deaths (29.2%). From 2003-2004 to 2012-2013, proportions with intermediate to high GRACE risk decreased (87.2% vs 82.0%); proportions with lowest risk increased (4.2% vs 7.6%; P= .01 for trend). The prevalence of diabetes, hypertension, cerebrovascular disease, chronic obstructive pulmonary disease, chronic renal failure, previous invasive coronary strategy, and current or ex-smoking status increased (all P < .001). Unadjusted all-cause mortality rates at 180 days decreased from 10.8% to 7.6% (unadjusted hazard ratio [HR], 0.968 [95% CI, 0.966-0.971]; difference in absolute mortality rate per 100 patients [AMR/100], −1.81 [95% CI, −1.95 to −1.67]). These findings were not substantially changed when adjusted additively by baseline GRACE risk score (HR, 0.975 [95% CI, 0.972-0.977]; AMR/100, −0.18 [95% CI, −0.21 to −0.16]), sex and socioeconomic status (HR, 0.975 [95% CI, 0.973-0.978]; difference in AMR/100, −0.24 [95% CI, −0.27 to −0.21]), comorbidities (HR, 0.973 [95% CI, 0.970-0.976]; difference in AMR/100, −0.44 [95% CI, −0.49 to −0.39]), and pharmacological therapies (HR, 0.972 [95% CI, 0.964-0.980]; difference in AMR/100, −0.53 [95% CI, −0.70 to −0.36]). However, the direction of association was reversed after further adjustment for use of an invasive coronary strategy (HR, 1.02 [95% CI, 1.01-1.03]; difference in AMR/100, 0.59 [95% CI, 0.33-0.86]), which was associated with a relative decrease in mortality of 46.1% (95% CI, 38.9%-52.0%). Conclusions and Relevance: Among patients hospitalized with NSTEMI in England and Wales, improvements in all-cause mortality were observed between 2003 and 2013. This was significantly associated with use of an invasive coronary strategy and not entirely related to a decline in baseline clinical risk or increased use of pharmacological therapies

    Magnetic Fluffy Dark Matter

    Full text link
    We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark Matter where the WIMP can scatter to a tower of heavier states. We assume a WIMP mass mχO(1100)m_\chi \sim \mathcal{O}(1-100) GeV and a constant splitting between successive states δO(1100)\delta \sim\mathcal{O}(1 - 100) keV. For the spin-independent scattering scenario we find that the direct experiments CDMS and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space, while for WIMPs that interact with nuclei via their magnetic moment a region of parameter space corresponding to mχ11m_{\chi}\sim 11 GeV and δ<15\delta < 15 keV is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators

    Get PDF
    Spatially confined rigid membranes reorganize their morphology in response to the imposed constraints. A crumpled elastic sheet presents a complex pattern of random folds focusing the deformation energy while compressing a membrane resting on a soft foundation creates a regular pattern of sinusoidal wrinkles with a broad distribution of energy. Here, we study the energy distribution for highly confined membranes and show the emergence of a new morphological instability triggered by a period-doubling bifurcation. A periodic self-organized focalization of the deformation energy is observed provided an up-down symmetry breaking, induced by the intrinsic nonlinearity of the elasticity equations, occurs. The physical model, exhibiting an analogy with parametric resonance in nonlinear oscillator, is a new theoretical toolkit to understand the morphology of various confined systems, such as coated materials or living tissues, e.g., wrinkled skin, internal structure of lungs, internal elastica of an artery, brain convolutions or formation of fingerprints. Moreover, it opens the way to new kind of microfabrication design of multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Assis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Gomes Araújo, Flávio M.. Fundación Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. Fundación Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Oliveira, Guilherme. Instituto Tecnológico Vale; Brasil. Fundación Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Asymmetric triplex metallohelices with high and selective activity against cancer cells

    Get PDF
    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and ​p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 ​p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli. At a glanc

    Prediction of leak flow rate in plastic water distribution pipes using vibro-acoustic measurements

    Get PDF
    Leakage from water distribution systems is a worldwide issue with consequences including loss of revenue, health and environmental concerns. Leaks have typically been found through leak noise correlation by placing sensors either side of the leak and recording and analysing its vibro-acoustic emission. While this method is widely used to identify the location of the leak, the sensors also record data that could be related to the leak’s flow rate, yet no reliable method exists to predict leak flow rate in water distribution pipes using vibro-acoustic emission. The aim of this research is to predict leak flow rate in medium-density polyethylene pipe using vibro-acoustic emission signals. A novel experimental methodology is presented whereby circular holes of four sizes are tested at several leak flow rates. Following the derivation of a number of features, least squares support vector machines are used in order to predict leak flow rate. The results show a strong correlation highlighting the potential of this technique as a rapid and practical tool for water companies to assess and prioritise leak repair
    corecore