55 research outputs found
In Vivo Serial MR Imaging of Magnetically Labeled Endothelial Progenitor Cells Homing to the Endothelium Injured Artery in Mice
Background: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs) play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. Methodology/Principal Findings: The left carotid common artery (LCCA) was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs). EPCs labeling was carried out in vitro using Fe2O3-poly-L-lysine (Fe2O3-PLL). In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T2WI. Larger MR signal voids of vessel wall on T2WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015). Quantitative analyses of vessel wall areas on T2WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p,0.05). Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. Conclusions/Significance: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPC
Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation
O2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells
BACKGROUND:Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium. METHODOLOGY/PRINCIPAL FINDINGS:Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3(rd) passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability. CONCLUSION/SIGNIFICANCE:We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells
Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro
Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke that lacks effective therapy and reliable prognosis. Neovascularization following ICH is an essential compensatory response that mediates brain repair and modulates the clinical outcome of stroke patients. However, the mechanism that dictates this process is unknown. Bone marrow-derived endothelial progenitor cells (EPCs) promote endothelial repair and contribute to ischemia-induced neovascularization. The human Tp53 gene harbors a common single-nucleotide polymorphism (SNP) at codon 72, which yields an arginine-to-proline amino-acidic substitution (Arg72Pro) that modulates the apoptotic activity of the p53 protein. Previously, we found that this SNP controls neuronal susceptibility to ischemia-induced apoptosis in vitro. Here, we evaluated the impact of the Tp53 Arg72Pro SNP on vascular repair and functional recovery after ICH. We first analyzed EPC mobilization and functional outcome based on the modified Rankin scale scores in a hospital-based cohort of 78 patients with non-traumatic ICH. Patients harboring the Pro allele of the Tp53 Arg72Pro SNP showed higher levels of circulating EPC-containing CD34 + cells, EPC-mobilizing cytokines-vascular endothelial growth factor and stromal cell-derived factor-1α-and good functional outcome following ICH, when compared with the homozygous Arg allele patients, which is compatible with increased neovascularization. To assess directly whether Tp53 Arg72Pro SNP regulated neovascularization after ICH, we used the humanized Tp53 Arg72Pro knock-in mice, which were subjected to the collagenase-induced ICH. The brain endothelial cells of the Pro allele-carrying mice were highly resistant to ICH-mediated apoptosis, which facilitated cytokine-mediated EPC mobilization, cerebrovascular repair and functional recovery. However, these processes were not observed in the Arg allele-carrying mice. These results reveal that the Tp53 Arg72Pro SNP determines neovascularization, brain repair and neurological recovery after ICH. This study is the first in which the Pro allele of Tp53 is linked to vascular repair and ability to functionally recover from stroke.This work was funded by The Instituto de Salud Carlos III Grants PI12/00685, PI15/00473 and RD12/0014/0007 (to AA), RD12/0014/0001 (to JC), PI14/01879 and CP12/03121 (to TS), RD12/0043/0021 (to JPB), CD11/00348 (to CR), CD12/00685 (to JA), CM11/00140 (to JJD), CM14/00096 (to MER-A), The Ministerio de Economía y Competitividad Grant SAF2013-41177-R (JPB), The Junta de Castilla y León (GRS843/A/13 and GRS1004/A/14; to JCG-S), The Xunta de Galicia (GRC2014/027; to JC) and the European Regional Development Fund (ERDF).Peer Reviewe
The adjunctive use of Angio-Seal in femoral vascular closure following percutaneous transcatheter aortic valve replacement
- …
