10,260 research outputs found

    Double-stranded break can be repaired by single-stranded oligonucleotides via the ATM/ATR pathway in mammalian cells

    Get PDF
    Single-stranded oligonucleotide (SSO)-mediated gene modification is a newly developed tool for site-specific gene repair in mammalian cells; however, the corrected cells always show G2/M arrest and cannot divide to form colonies. This phenomenon and the unclear mechanism seriously challenge the future application of this technique. In this study, we developed an efficient SSO-mediated DNA repair system based on double-stranded break (DSB) induction. We generated a mutant EGFP gene with insertions of 24 bp to 1.6 kb in length as a reporter integrated in mammalian cell lines. SSOs were successfully used to delete the insertion fragments upon DSB induction at a site near the insertion. We demonstrated that this process is dependent on the ATM/ATR pathway. Importantly, repaired cell clones were viable. Effects of deletion length, SSO length, strand bias, and SSO modification on gene repair frequency were also investigated. © 2008 Mary Ann Liebert, Inc.published_or_final_versio

    Cell death caused by single-stranded oligodeoxynucleotide-mediated targeted genomic sequence modification

    Get PDF
    Targeted gene repair directed by single-stranded oligodeoxynucleotides (ssODNs) offers a promising tool for biotechnology and gene therapy. However, the methodology is currently limited by its low frequency of repair events, variability, and low viability of "corrected" cells. In this study, we showed that during ssODN-mediated gene repair reaction, a significant population of corrected cells failed to divide, and were much more prone to undergo apoptosis, as marked by processing of caspases and PARP-1. In addition, we found that apoptotic cell death triggered by ssODN-mediated gene repair was largely independent of the ATM/ATR kinase. Furthermore, we examined the potential involvement of the mismatch repair (MMR) proteins in this "correction reaction-induced" cell death. Result showed that while defective MMR greatly enhanced the efficiency of gene correction, compromising the MMR system did not yield any viable corrected clone, indicating that the MMR machinery, although plays a critical role in determining ssODN-directed repair, was not involved in the observed cellular genotoxic responses. © 2009. Mary Ann Liebert, Inc.published_or_final_versio

    Bioinformatics advances in saliva diagnostics

    Get PDF
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart

    Revisit Sparse Polynomial Interpolation based on Randomized Kronecker Substitution

    Full text link
    In this paper, a new reduction based interpolation algorithm for black-box multivariate polynomials over finite fields is given. The method is based on two main ingredients. A new Monte Carlo method is given to reduce black-box multivariate polynomial interpolation to black-box univariate polynomial interpolation over any ring. The reduction algorithm leads to multivariate interpolation algorithms with better or the same complexities most cases when combining with various univariate interpolation algorithms. We also propose a modified univariate Ben-or and Tiwarri algorithm over the finite field, which has better total complexity than the Lagrange interpolation algorithm. Combining our reduction method and the modified univariate Ben-or and Tiwarri algorithm, we give a Monte Carlo multivariate interpolation algorithm, which has better total complexity in most cases for sparse interpolation of black-box polynomial over finite fields

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Integrated multiple mediation analysis: A robustness–specificity trade-off in causal structure

    Get PDF
    Recent methodological developments in causal mediation analysis have addressed several issues regarding multiple mediators. However, these developed methods differ in their definitions of causal parameters, assumptions for identification, and interpretations of causal effects, making it unclear which method ought to be selected when investigating a given causal effect. Thus, in this study, we construct an integrated framework, which unifies all existing methodologies, as a standard for mediation analysis with multiple mediators. To clarify the relationship between existing methods, we propose four strategies for effect decomposition: two-way, partially forward, partially backward, and complete decompositions. This study reveals how the direct and indirect effects of each strategy are explicitly and correctly interpreted as path-specific effects under different causal mediation structures. In the integrated framework, we further verify the utility of the interventional analogues of direct and indirect effects, especially when natural direct and indirect effects cannot be identified or when cross-world exchangeability is invalid. Consequently, this study yields a robustness–specificity trade-off in the choice of strategies. Inverse probability weighting is considered for estimation. The four strategies are further applied to a simulation study for performance evaluation and for analyzing the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer data set from Taiwan to investigate the causal effect of hepatitis C virus infection on mortality

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    First observation of psi(2S)-->K_S K_L

    Full text link
    The decay psi(2S)-->K_S K_L is observed for the first time using psi(2S) data collected with the Beijing Spectrometer (BESII) at the Beijing Electron Positron Collider (BEPC); the branching ratio is determined to be B(psi(2S)-->K_S K_L) = (5.24\pm 0.47 \pm 0.48)\times 10^{-5}. Compared with J/psi-->K_S K_L, the psi(2S) branching ratio is enhanced relative to the prediction of the perturbative QCD ``12%'' rule. The result, together with the branching ratios of psi(2S) decays to other pseudoscalar meson pairs (\pi^+\pi^- and K^+K^-), is used to investigate the relative phase between the three-gluon and the one-photon annihilation amplitudes of psi(2S) decays.Comment: 5 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let

    Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring

    Get PDF
    We construct a zero-curvature Lax connection in a sub-sector of the superstring theory on AdS(4) x CP(3) which is not described by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet fermions associated to eight broken supersymmetries of the type IIA background are physical fields. As such, the prescription for the construction of the Lax connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4) does not do the job. So, to construct the Lax connection we have used an alternative method which nevertheless relies on the isometry of the target superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
    corecore