408 research outputs found

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Circulating mediators of inflammation and immune activation in AIDS-related non-Hodgkin lymphoma

    Get PDF
    Background: Non-Hodgkin lymphoma (NHL) is the most common AIDS-related malignancy in developed countries. An elevated risk of developing NHL persists among HIV-infected individuals in comparison to the general population despite the advent of effective antiretroviral therapy. The mechanisms underlying the development of AIDS-related NHL (A-NHL) are not fully understood, but likely involve persistent B-cell activation and inflammation. Methods: This was a nested case-control study within the ongoing prospective Multicenter AIDS Cohort Study (MACS). Cases included 47 HIV-positive male subjects diagnosed with high-grade B-cell NHL. Controls were matched to each case from among participating HIV-positive males who did not develop any malignancy. Matching criteria included time HIV+ or since AIDS diagnosis, age, race and CD4+ cell count. Sera were tested for 161 serum biomarkers using multiplexed beadbased immunoassays. Results: A subset of 17 biomarkers, including cytokines, chemokines, acute phase proteins, tissue remodeling agents and bone metabolic mediators was identified to be significantly altered in A-NHL cases in comparison to controls. Many of the biomarkers included in this subset were positively correlated with HIV viral load. A pathway analysis of our results revealed an extensive network of interactions between current and previously identified biomarkers. Conclusions: These findings support the current hypothesis that A-NHL develops in the context of persistent immune stimulation and inflammation. Further analysis of the biomarkers identified in this report should enhance our ability to diagnose, monitor and treat this disease. © 2014 Nolen et al

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Taking stock of gene therapy for cystic fibrosis

    Get PDF
    The identification of the cystic fibrosis (CF) gene opened the way for gene therapy. In the ten years since then, proof of principle in vitro and then in animal models in vivo has been followed by numerous clinical studies using both viral and non-viral vectors to transfer normal copies of the gene to the lungs and noses of CF patients. A wealth of data have emerged from these studies, reflecting enormous progress and also helping to focus and define key difficulties that remain unresolved. Gene therapy for CF remains the most promising possibility for curative rather than symptomatic therapy

    Measurement of the branching fraction for BD0KB^- \to D^0 K^{*-}

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Observation of a significant excess of π0π0\pi^{0}\pi^{0} events in B meson decays

    Get PDF
    We present an observation of the decay B0π0π0B^{0} \to \pi^{0} \pi^{0} based on a sample of 124 million BBˉB\bar{B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy BB Factory at SLAC. We observe 46±13±346 \pm 13 \pm 3 events, where the first error is statistical and the second is systematic, corresponding to a significance of 4.2 standard deviations including systematic uncertainties. We measure the branching fraction \BR(B^{0} \to \pi^{0} \pi^{0}) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}, averaged over B0B^{0} and Bˉ0\bar{B}^{0} decays

    The IGNITE (investigation to guide new insight into translational effectiveness) trial: Protocol for a translational study of an evidenced-based wellness program in fire departments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and prioritize determinants that enable and hinder translation of evidenced-based health interventions in well-defined settings.</p> <p>Methods</p> <p>The IGNITE (investigation to guide new insights for translational effectiveness) trial is a prospective cohort study of a worksite wellness and injury reduction program from adoption to final outcomes among 12 fire departments. It will employ a mixed methods strategy to define a translational model. We will assess decision to adopt, installation, use, and outcomes (reach, individual outcomes, and economic effects) using onsite measurements, surveys, focus groups, and key informant interviews. Quantitative data will be used to define the model and conduct mediation analysis of each translational phase. Qualitative data will expand on, challenge, and confirm survey findings and allow a more thorough understanding and convergent validity by overcoming biases in qualitative and quantitative methods used alone.</p> <p>Discussion</p> <p>Findings will inform worksite wellness in fire departments. The resultant prioritized influences and model of effective translation can be validated and manipulated in these and other settings to more efficiently move science to service.</p

    Inhibitory Effect of TNF-α on Malaria Pre-Erythrocytic Stage Development: Influence of Host Hepatocyte/Parasite Combinations

    Get PDF
    BACKGROUND: The liver stages of malaria parasites are inhibited by cytokines such as interferon-gamma or Interleukin (IL)-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO) and radical oxygen intermediates (ROI), which kill hepatic parasites. However, conflicting results were obtained with TNF-alpha possibly because of differences in the models used. We have reassessed the role of TNF-alpha in the different cellular systems used to study the Plasmodium pre-erythrocytic stages. METHODS AND FINDINGS: Human or mouse TNF-alpha were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-alpha treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-alpha inhibition was mediated by a soluble factor present in the supernatant of TNF-alpha stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. CONCLUSIONS: Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection
    corecore