499 research outputs found
Evolution of opinions on social networks in the presence of competing committed groups
Public opinion is often affected by the presence of committed groups of
individuals dedicated to competing points of view. Using a model of pairwise
social influence, we study how the presence of such groups within social
networks affects the outcome and the speed of evolution of the overall opinion
on the network. Earlier work indicated that a single committed group within a
dense social network can cause the entire network to quickly adopt the group's
opinion (in times scaling logarithmically with the network size), so long as
the committed group constitutes more than about 10% of the population (with the
findings being qualitatively similar for sparse networks as well). Here we
study the more general case of opinion evolution when two groups committed to
distinct, competing opinions and , and constituting fractions and
of the total population respectively, are present in the network. We show
for stylized social networks (including Erd\H{o}s-R\'enyi random graphs and
Barab\'asi-Albert scale-free networks) that the phase diagram of this system in
parameter space consists of two regions, one where two stable
steady-states coexist, and the remaining where only a single stable
steady-state exists. These two regions are separated by two fold-bifurcation
(spinodal) lines which meet tangentially and terminate at a cusp (critical
point). We provide further insights to the phase diagram and to the nature of
the underlying phase transitions by investigating the model on infinite
(mean-field limit), finite complete graphs and finite sparse networks. For the
latter case, we also derive the scaling exponent associated with the
exponential growth of switching times as a function of the distance from the
critical point.Comment: 23 pages: 15 pages + 7 figures (main text), 8 pages + 1 figure + 1
table (supplementary info
Towards quantum computing with single atoms and optical cavities on atom chips
We report on recent developments in the integration of optical
microresonators into atom chips and describe some fabrication and
implementation challenges. We also review theoretical proposals for quantum
computing with single atoms based on the observation of photons leaking through
the cavity mirrors. The use of measurements to generate entanglement can result
in simpler, more robust and scalable quantum computing architectures. Indeed,
we show that quantum computing with atom-cavity systems is feasible even in the
presence of relatively large spontaneous decay rates and finite photon detector
efficiencies.Comment: 14 pages, 6 figure
The South, the suburbs, and the Vatican too: explaining partisan change among Catholics
This paper explains changes in partisanship among Catholics in the last quarter of the 20th Century using a theory of partisan change centered on the contexts in which Catholics lived. Catholics were part of the post-New Deal Democratic coalition, but they have become a swing demographic group. We argue that these changes in partisanship are best explained by changes in elite messages that are filtered through an individual’s social network. Those Catholics who lived or moved into the increasingly Republican suburbs and South were the Catholics who were most likely to adopt a non-Democratic partisan identity. Changes in context better explain Catholic partisanship than party abortion policy post Roe v. Wade or ideological sorting. We demonstrate evidence in support of our argument using the ANES cumulative file from 1972 through 2000
Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950-1995 A.D.: reproducibility and implications for quantitative reconstructions of sea surface temperature variations
In order to assess the fidelity of coral Sr/Ca for quantitative reconstructions of sea surface temperature variations, we have generated three monthly Sr/Ca time series from Porites corals from the lagoon of Peros Banhos (71°E, 5°S, Chagos Archipelago). We find that all three coral Sr/Ca time series are well correlated with instrumental records of sea surface temperature (SST) and air temperature. However, the intrinsic variance of the single-core Sr/Ca time series differs from core to core, limiting their use for quantitative estimates of past temperature variations. Averaging the single-core data improves the correlation with instrumental temperature (r > 0.7) and allows accurate estimates of interannual temperature variations (~0.35°C or better). All Sr/Ca time series indicate a shift towards warmer temperatures in the mid-1970s, which coincides with the most recent regime shift in the Pacific Ocean. However, the magnitude of the warming inferred from coral Sr/Ca differs from core to core and ranges from 0.26 to 0.75°C. The composite Sr/Ca record from Peros Banhos clearly captures the major climatic signals in the Indo-Pacific Ocean, i.e. the El Niño–southern oscillation and the Pacific decadal oscillation. Moreover, composite Sr/Ca is highly correlated with tropical mean temperatures (r = 0.7), suggesting that coral Sr/Ca time series from the tropical Indian Ocean will contribute to multi-proxy reconstructions of tropical mean temperatures
Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function
There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Organising care, practice and participative research : Papers from the cognitive decline partnership centre
Non peer reviewe
Recommended from our members
Doll Play narratives about starting school in children of socially anxious mothers, and their relation to subsequent child school-based anxiety
Background: Child social anxiety is common, and predicts later emotional and academic impairment. Offspring of socially anxious mothers are at increased risk. It is important to establish whether individual vulnerability to disorder can be identified in young children.
Method: The responses of 4.5 year-old children of mothers with social phobia (N = 62) and non-anxious mothers (N = 60) were compared, two months before school entry, using a Doll Play (DP) procedure focused on the social challenge of starting school. DP responses were examined in relation to teacher reports of anxious-depressed symptoms and social worries at the end of the child’s first school term. The role of earlier child behavioral inhibition and attachment, assessed at 14 months, was also considered.
Results: Compared to children of non-anxious mothers, children of mothers with social phobia were significantly more likely to give anxiously negative responses in their school DP (OR = 2.57). In turn, negative DP predicted teacher reported anxious-depressed and social worry problems. There were no effects of infant behavioral inhibition or attachment.
Conclusion: Vulnerability in young children at risk of anxiety can be identified using Doll Play narratives
Recommended from our members
Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution
This study undertakes a multi-model comparison with the aim to describe and quantify systematic changes of the global energy and water budgets when the horizontal resolution of atmospheric models is increased and to identify common factors of these changes among models. To do so, we analyse an ensemble of twelve atmosphere-only and six coupled GCMs, with different model formulations and with resolutions spanning those of state-of-the-art coupled GCMs, i.e. from resolutions coarser than 100 km to resolutions finer than 25 km. The main changes in the global energy budget with resolution are a systematic increase in outgoing longwave radiation and decrease in outgoing shortwave radiation due to changes in cloud properties, and a systematic increase in surface latent heat flux; when resolution is increased from 100 to 25 km, the magnitude of the change of those fluxes can be as large as 5 W m−2. Moreover, all but one atmosphere-only model simulate a decrease of the poleward energy transport at higher resolution, mainly explained by a reduction of the equator-to-pole tropospheric temperature gradient. Regarding hydrological processes, our results are the following: (1) there is an increase of global precipitation with increasing resolution in all models (up to 40 × 103 km3 year−1) but the partitioning between land and ocean varies among models; (2) the fraction of total precipitation that falls on land is on average 10% larger at higher resolution in grid point models, but it is smaller at higher resolution in spectral models; (3) grid points models simulate an increase of the fraction of land precipitation due to moisture convergence twice as large as in spectral models; (4) grid point models, which have a better resolved orography, show an increase of orographic precipitation of up to 13 × 103 km3 year−1 which explains most of the change in land precipitation; (5) at the regional scale, precipitation pattern and amplitude are improved with increased resolution due to a better simulated seasonal mean circulation. We discuss our results against several observational estimates of the Earth's energy budget and hydrological cycle and show that they support recent high estimates of global precipitation
Hemodynamic effects of short-term hyperoxia after coronary artery bypass grafting
Background: Although oxygen is generally administered in a liberal manner in the perioperative setting, the effects of oxygen administration on dynamic cardiovascular parameters, filling status and cerebral perfusion have not been fully unraveled. Our aim was to study the acute hemodynamic and microcirculatory changes before, during and after arterial hyperoxia in mechanically ventilated patients after coronary artery bypass grafting (CABG) surgery. Methods: This was a single-center physiological study in a tertiary care ICU in the Netherlands. Twenty-two patients scheduled for ICU admission after elective CABG were enrolled in the study between September 2014 and September 2015. In the ICU, patients were exposed to a fraction of inspired oxygen (FiO(2)) of 90% allowing a 15-min wash-in period. Various hemodynamic parameters were measured using direct pressure signals and continuous arterial waveform analysis at three sequential time points: before, during and after hyperoxia. Results: During a 15-min exposure to a fraction of inspired oxygen (FiO2) of 90%, the partial pressure of arterial oxygen (PaO2) and arterial oxygen saturation (SaO(2)) were significantly higher. The systemic resistance increased (P <0.0001), without altering the heart rate. Stroke volume variation and pulse pressure variation decreased slightly. The cardiac output did not significantly decrease (P = 0.08). Mean systemic filling pressure and arterial critical closing pressure increased (P <0.01), whereas the percentage of perfused microcirculatory vessels decreased (P <0.01). Other microcirculatory parameters and cerebral blood flow velocity showed only slight changes. Conclusions: We found that short-term hyperoxia affects hemodynamics in ICU patients after CABG. This was translated in several changes in central circulatory variables, but had only slight effects on cardiac output, cerebral blood flow and the microcirculatio
- …
