48 research outputs found
An Investigation of the Effect of Electrode Geometry and Frequency of Power Supply in the Homogeneity of Dielectric Barrier Discharge in Air
An experimental investigation of dielectric barrier discharge (DBD) produced in air isreported in the present paper. The discharge was produced by applying 0?20 kV AC source atfrequency 10?30 kHz. The main objective of the study was to investigate the dependence ofthe discharge homogeneity on the frequency of applied source and the geometry of theelectrodes. For this propose, three different types of electrodes were used. The discharge wassystematically investigated on an extended range of electrical parameters using highfrequency digital oscilloscope. Non-thermal nature of the discharge was tested by thetreatment of hydrophobic polymer surface by measuring the change in contact angle withwater drops
Electrical characterization of aluminum (Al) thin films measured by using four- point probe method
This paper reports the results of electrical characterization of aluminum thin films. Uniform Al thin films were deposited by physical vapor deposition (PVD) technique on glass substrates. The electrical resistivity of the films as a function of film thickness was studied. These parameters have been measured by four-point probe method. The electrical resistivity was obtained by the measurement of current (in mA) and voltage in (mV) through the probe. The results showed that resistivity of the film decreases linearly with the film thickness in the range of the thickness studied in this work
Electrical Characterization of Atmospheric Pressure Gaseous Discharge
This paper reports the generation of atmospheric pressure gaseous discharge and its electrical characterization. For this purpose, a point-plane electrode system has been fabricated. A high voltage power supply (0-11 kV, 50 Hz) was applied across the electrodes. Discharge was generated with and without the dielectric barrier between the electrodes. The gas discharge was seen as in-homogenous filamentary type discharge without the dielectric. Whereas the filamentary discharge turned into bluish glow when the lower electrode was covered by a dielectric. The current and voltage of the discharge were measured by using a high frequency digital oscilloscope. The power consumed by the discharge was measured from the measured values of current and voltage. A special attention has been paid to investigate the effect of electrode geometry on the nature of the discharge
Key words: Gaseous discharge; point-plane electrode; dielectric material; filamentary discharge; current and voltage measurement
DOI: 10.3126/kuset.v4i1.2887
Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 81-8
Estimation of electron temperature in atmospheric pressure dielectric barrier discharge using line intensity ratio method
Dielectric Barrier Discharge was produced by applying high voltage AC source of frequency (10-30 KHz) and potential difference of (0-20) kV across two parallel plate electrodes with glass as dielectric barrier. Optical emission spectroscopy was used for the characterization of the discharge produced at atmospheric pressure. The emission spectra in the range of 200 nm to 850 nm have been analyzed to estimate the electron temperature by line intensity ratio method. The results showed that the electron temperature is about 0.9 eV
Comparison of dielectric barrier discharge in air, nitrogen and argon at atmospheric pressure
This paper reports the results of electrical characterization of dielectric barrier discharge (DBD) generated in air, nitrogen and argon at atmospheric pressure. Polycarbonate plate of thickness 1 mm was used as a dielectric barrier in a specially designed hemispherical-plane electrode system. A nonuniform filamentary type of discharge was observed in air. Introducing nitrogen and argon gas at controlled flow rate of 1-2 liters / minute resulted a more homogeneous discharge at a frequency of 28 kHz of the AC source. The discharge was investigated for two values of electrode gap of 1 mm and 2 mm by varying the applied voltage. The number of current pulse per half cycle and the magnitude of the discharge current were found to be higher in the case of air discharge in comparison to the discharge in nitrogen and argon. The characteristics of the discharge in air in the absence dielectric barrier was also examined and interestingly it was found that in this case the filamentary discharge turned to a glow discharge for specific value of applied voltage and electrode spacing
Electrical and Optical Characterization of Dielectric Barrier Discharge Produced in Atmospheric Air
his paper reports the results concerning the production of Dielectric Barrier Discharge (DBD) at atmospheric pressure air and its electrical and optical characterization. The discharge was produced by applying high voltage AC source of frequency (10-30) kHz and potential difference of (0-20) kV across the electrodes. The discharge was characterized by measuring current and voltage with a high frequency digital oscilloscope. The optical characterization was made by taking the spectrums of discharge by optical emission spectrometer. The optical spectra in the range of 200 nm to 450 nm have been analyzed in order to estimate the electron temperature by intensity ratio method. Results showed that the electron temperature is about 1.9 eV
Development Of Atmospheric Pressure Plasma Jet In Air
In this paper, an atmospheric pressure plasma jet (APPJ) in air that is expected to be useful for polymer surface modification has been reported. The plasma jet was produced by applying (10 - 30) kHz, (0 - 20) kV AC source. The electrical and optical measurements have also been reported. The use of solenoid as an external electrode has been found to be more effective in boosting the jet to a distance up to 30 mm even with a small flow rate of air. The characteristic of the proposed APPJ was investigated by measuring the effect of treatment on a PE film on the jet for different exposition time and distance from the nozzle. It has been confirmed that the jet can modify polymer film with a work distance of over 25mm. This plasma jet can be useful for the treatment and cleaning of objects having large structures and could be used in wider areas of application
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021
Background
Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021.
Methods
The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws.
Findings
Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP).
Interpretation
Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
