10 research outputs found
Misdirected yet intact TREX1 exonuclease activity causes human cerebral and systemic small vessel disease.
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an incurable microvascular disease caused by C-terminus truncation of the TREX1 exonuclease. There is a pressing need to understand disease mechanisms and identify therapeutic targets.We evaluated TREX1 sequencing data from 469 229 UK Biobank participants together with RVCL-S-related microvascular clinical and imaging outcomes. We show that mono-allelic truncating mutations in TREX1 require intact nuclease activity in order to cause endothelial disease. Differential proteomics identifies loss of interaction with endoplasmic reticulum insertion proteins such as Guided Entry of Tail-Anchored Proteins Factor 3 as a major consequence of pathogenic TREX1 truncation, and this altered trafficking results in the unregulated presence of enzymatically active TREX1 in the nucleus. In endothelial cells with a patient mutation, mislocalized yet enzymatically active TREX1 causes accumulation of a spectrum of DNA damage. These pathological changes can be rescued by inhibiting exonuclease activity.In summary, our data implicate exonuclease-dependent DNA damage in endothelial cells as a key therapeutic target in the pathogenesis of RVCL-S
Minichromosome maintenance proteins 2 and 5 in non-benign epithelial ovarian tumours: relationship with cell cycle regulators and prognostic implications
Minichromosome maintenance proteins (MCM) have recently emerged as novel proliferation markers with prognostic implications in several tumour types. This is the first study investigating MCM-2 and MCM-5 immunohistochemical expression in a series of ovarian adenocarcinomas and low malignant potential (LMP) tumours aiming to determine possible associations with clinicopathological parameters, the conventional proliferation index Ki-67, cell cycle regulators (p53, p27Kip1, p21WAF1 and pRb) and patients' outcome. Immunohistochemistry was applied in a series of 43 cases of ovarian LMP tumours and 85 cases of adenocarcinomas. Survival analysis was restricted to adenocarcinomas. The median MCM-2 and MCM-5 labelling indices (LIs) were significantly higher in adenocarcinomas compared to LMP tumours (P<0.0001 for both associations). In adenocarcinomas, the levels of MCM-2 and MCM-5 increased significantly with advancing tumour stage (P=0.0052 and P=0.0180, respectively), whereas both MCM-2 and MCM-5 increased significantly with increasing tumour grade (P=0.0002 and P=0.0006, respectively) and the presence of bulky residual disease (P<0.0001 in both relationships). A strong positive correlation was established between MCM-2 or MCM-5 expression level and Ki-67 LI (P<0.0001) as well as p53 protein (P=0.0038 and P=0.0500, respectively). Moreover, MCM-2 LI was inversely correlated with p27Kip−1 LI (P=0.0068). Finally, both MCM-2 and MCM-5 were associated significantly with adverse patients' outcome in both univariate (⩾20 vs >20%, P=0.0011 and ⩾25 vs <25%, P=0.0100, respectively) and multivariate (P=0.0001 and 0.0090, respectively) analysis. An adequately powered independent group of 45 patients was used in order to validate our results in univariate survival analysis. In this group, MCM-2 and MCM-5 expression retained their prognostic significance (P<0.0001 in both relationships). In conclusion, MCM-2 and MCM-5 proteins appear to be promising as prognostic markers in patients with ovarian adenocarcinomas
Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort
\ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p<0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity
Quantifying association of early proteinuria and estimated glomerular filtration rate changes with long-term kidney failure in C3 glomerulopathy and immune-complex membranoproliferative glomerulonephritis using the United Kingdom RaDaR Registry
\ua9 2025 International Society of Nephrology. Introduction: C3 glomerulopathy (C3G) and immune-complex membranoproliferative glomerulonephritis (IC-MPGN) are rare disorders that frequently result in kidney failure over the long-term. Presently, there are no disease-specific treatments approved for these disorders, although there is much interest in the therapeutic potential of complement inhibition. However, the limited duration and necessarily small size of controlled trials means there is a need to quantify how well short-term changes in estimated glomerular filtration rate (eGFR) and proteinuria predict the clinically important outcome of kidney failure. Methods: We address this using longitudinal data from the UK Registry of Rare Kidney Diseases (RaDaR) involving retrospective and prospective data collection with linkage to hospital laboratories via automated feeds of 371 patients. Analyses of kidney survival were conducted using Kaplan–Meier and Cox regression with eGFR slope estimated using linear mixed models. Results: In a median of 11.0 (inter quartile range 7.4-15.1) years follow-up, 148 patients (40%) reached kidney failure. There was no significant difference in progression to kidney failure between C3G and IC-MPGN groups. Baseline urine protein-creatinine ratio (UPCR), although high, was not associated with kidney failure in either group. Two-year eGFR slope had a modest association with kidney failure. In contrast, both 20%‒50% and 50 mg/mmol reductions in UPCR between 0-12 months were associated with lower kidney failure risk in both groups. Notably, those with a UPCR under 100 mg/mmol at 12 months had a substantially lower risk of kidney failure (hazard ratio 0.10 (95% confidence interval 0.03-0.30). Conclusions: Overall, proteinuria a short time after diagnosis is strongly associated with long-term outcomes and a UPCR under 100 mg/mmol at one year is associated with a substantially lower kidney failure risk
Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells
Generation and Characterization of Multipotent Stem Cells from Established Dermal Cultures
Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort
\ua9 2024. Introduction: The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world\u27s largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR. Methods: RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census. Results: We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001). Conclusion: We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases
