28 research outputs found
Statistical analysis of modal gating in ion channels
Ion channels regulate the concentrations of ions within cells. By stochastically opening and closing its pore, they enable or prevent ions from crossing the cell membrane. However, rather than opening with a constant probability, many ion channels switch between several different levels of activity even if the experimental conditions are unchanged. This phenomenon is known as modal gating: instead of directly adapting its activity, the channel seems to mix sojourns in active and inactive modes in order to exhibit intermediate open probabilities. Evidence is accumulating that modal gating rather than modulation of opening and closing at a faster time scale is the primary regulatory mechanism of ion channels. However, currently, no method is available for reliably calculating sojourns in different modes. In order to address this challenge, we develop a statistical framework for segmenting single-channel datasets into segments that are characteristic for particular modes. The algorithm finds the number of mode changes, detects their locations and infers the open probabilities of the modes. We apply our approach to data from the inositol-trisphosphate receptor. Based upon these results, we propose that mode changes originate from alternative conformational states of the channel protein that determine a certain level of channel activity
Data-Driven Modelling of the Inositol Trisphosphate Receptor (IPR) and its Role in Calcium-Induced Calcium Release (CICR)
We review the current state of the art of data-driven modelling of the inositol trisphosphate receptor (IPR). After explaining that the IPR plays a crucial role as a central regulator in calcium dynamics, several sources of relevant experimental data are introduced. Single ion channels are best studied by recording single-channel currents under different ligand concentrations via the patch-clamp technique. The particular relevance of modal gating, the spontaneous switching between different levels of channel activity that occur even at constant ligand concentrations, is highlighted. In order to investigate the interactions of IPRs, calcium release from small clusters of channels, so-called calcium puffs, can be used. We then present the mathematical framework common to all models based on single-channel data, aggregated continuous-time Markov models, and give a short review of statistical approaches for parameterising these models with experimental data. The process of building a Markov model that integrates various sources of experimental data is illustrated using two recent examples, the model by Ullah et al. and the “Park–Drive” model by Siekmann et al. (Biophys. J. 2012), the only models that account for all sources of data currently available. Finally, it is demonstrated that the essential features of the Park–Drive model in different models of calcium dynamics are preserved after reducing it to a two-state model that only accounts for the switching between the inactive “park” and the active “drive” modes. This highlights the fact that modal gating is the most important mechanism of ligand regulation in the IPR. It also emphasises that data-driven models of ion channels do not necessarily have to lead to detailed models but can be constructed so that relevant data is selected to represent ion channels at the appropriate level of complexity for a given application
3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field
Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of K(hard) values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media
