544 research outputs found
Development of HIV-1 rectal-specific microbicides and colonic tissue evaluation
The gastrointestinal tract is structurally and functionally different from the vagina. Thus, the paradigm of topical microbicide development and evaluation has evolved to include rectal microbicides (RMs). Our interest was to create unique RM formulations to safely and effectively deliver antiretroviral drugs to mucosal tissue. RMs were designed to include those that spread and coat all surfaces of the rectum and distal colon rapidly (liquid) and those that create a deformable, erodible barrier and remain localized at the administration site (gel). Tenofovir (TFV) (1%) was formulated as an aqueous thermoreversible fluid and a carbopol-based aqueous hydrogel. Lipid-based liquid and gel formulations were prepared for UC781 (0.1%) using isopropyl myristate and GTCC (Caprylic/Capric Triglycerides), respectively. Formulations were characterized for pH, viscosity, osmolality, and drug content. Pre-clinical testing incorporated ex vivo colonic tissue obtained through surgical resections and flexible sigmoidoscopy (flex sig). As this was the first time using tissue from both sources side-by-side, the ability to replicate HIV-1 was compared. Efficacy of the RM formulations was tested by applying the products with HIV-1 directly to polarized colonic tissue and following viral replication. Safety of the formulations was determined by MTT assay and histology. All products had a neutral pH and were isoosmolar. While HIV-1BaL and HIV-1 JR-CSF alone and in the presence of semen had similar replication trends between surgically resected and flex sig tissues, the magnitude of viral replication was significantly better in flex sig tissues. Both TFV and UC781 formulations protected the colonic tissue, regardless of tissue source, from HIV-1 and retained tissue viability and architecture. Our in vitro and ex vivo results show successful formulation of unique RMs. Moreover, the results of flex sig and surgically resected tissues were comparable suggesting the incorporation of both in pre-clinical testing algorithms. © 2014 Dezzutti et al
A SPION-eicosane protective coating for water soluble capsules : evidence for on-demand drug release triggered by magnetic hyperthermia
An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Routes for breaching and protecting genetic privacy
We are entering the era of ubiquitous genetic information for research,
clinical care, and personal curiosity. Sharing these datasets is vital for
rapid progress in understanding the genetic basis of human diseases. However,
one growing concern is the ability to protect the genetic privacy of the data
originators. Here, we technically map threats to genetic privacy and discuss
potential mitigation strategies for privacy-preserving dissemination of genetic
data.Comment: Draft for comment
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector
10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR
Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam
T2K reports its first measurements of the parameters governing the disappearance of ν-μ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν-μ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν-μ survival probability is expected to be minimal. Using a data set corresponding to 4.01×1020 protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin2(θ-23)=0.45 and |Δm-322|=2.51×10-3 eV2 with 68% confidence intervals of 0.38-0.64 and 2.26-2.80×10-3 eV2, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νμ disappearance parameters measured by T2K
Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1–3 GeV with the T2K INGRID detector
We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σcc) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV)=1.10±0.15 (10-38 cm2/nucleon), σcc(2.0 GeV)=2.07±0.27 (10-38 cm2/nucleon), and σcc(3.3 GeV)=2.29±0.45 (10-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections
Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to POT
18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of protons-on-target to protons-on-target,aiming at initial observation of CP violation with 3 or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio
Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation gamma rays
We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE) cross section gamma It is obtained by observing nuclear deexcitation. rays which follow neutrino-oxygen interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to 3.01 x 10(20) protons on target. By selecting only events during the T2K beam window and with well-reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity is dramatically reduced. We observe 43 events in the 4-30 MeV reconstructed energy window, compared with an expectation of 51.0, which includes an estimated 16.2 background events. The background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 x 10(-38) cm(2) with a 68% confidence interval of (1.22, 2.20) x 10(-38) cm(2) at a median neutrino energy of 630 MeV, compared with the theoretical prediction of 2.01 x 10(-38) cm(2)
- …
