122 research outputs found
The Relevance of Fatalism in the Study of Latinas’ Cancer Screening Behavior: A Systematic Review of the Literature
# The Author(s) 2010. This article is published with open access at Springerlink.com Background Fatalism has been identified as a dominant belief among Latinos and is believed to act as a barrier to cancer prevention. However, controversy exists over the utility of the construct in explaining health disparities experienced by disadvantaged populations above the influence of structural barriers such as low socioeconomic status (SES) and limited access to health care. Purpose This paper reviews the empirical research on fatalism and Latinas ’ participation in cancer screening in an attempt to determine whether fatalism predicts participation in cancer screening after accounting for structural barriers
Differential effects of tamoxifen and anastrozole on optic cup size in breast cancer survivors
Search for electron antineutrino appearance in a long-baseline muon antineutrino beam
Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions
Measurements of (nu)over-bar(mu) and (nu)over-bar(mu) + nu(mu) charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV
International audienceWe report measurements of the flux-integrated || and || charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced || and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, || and ||, ||, || is required. In this paper, both the || cross-sections and || cross-sections on water and hydrocarbon targets and their ratios are provided by using the D’Agostini unfolding method. The results of the integrated || cross-section measurements over this phase space are ||, ||, and ||. The || cross-section is ||, ||, and ||
Search for neutral-current induced single photon production at the ND280 near detector in T2K
Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron–positron pairs, we achieved 95% pure gamma ray sample from protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at cm2 (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals
Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation
Cost-effectiveness of clostridial collagenase ointment on wound closure in patients with diabetic foot ulcers: economic analysis of results from a multicenter, randomized, open-label trial
Photo-assisted adsorption of gold nanoparticles onto a silicon substrate
We report on a photo-assisted adsorption of gold nanoparticles on a silicon substrate studied using atomic-force microscopy and secondary ion mass-spectrometry. Depending on a silicon conductivity type (n-Si or p-Si), the amount of photo-assisted adsorbed gold nanoparticles either increases (n-Si) or decreases (p-Si) on irradiation. In addition, the impacts of a cationic polyelectrolyte monolayer and adsorption time were also revealed. The polyelectrolyte layer enhances the adsorption of the gold nanoparticles but decreases the influence of light. The results of the photo-assisted adsorption on two types of silicon wafer were explained by electron processes at the substrate/solution interface.
This work was supported by the German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD), Project No. P-2014b-1, and Russian foundation for basic research, Project No. 16-08-00524_a
Photocontrolled Adsorption of Polyelectrolyte Molecules on a Silicon Substrate
We report on a change in the properties of monomolecular films of polyelectrolyte molecules, induced by illuminating the silicon substrate on which they adsorb. It was found that under illumination the thickness of the adsorbed layer decreases by at least 27% and at the same time the roughness is significantly reduced in comparison to a layer adsorbed without irradiation. Furthermore, the homogeneity of the film topography and the surface potential is shown to be improved by illumination. The effect is explained by a change in surface charge density under irradiation of n- and p-type silicon wafers. The altered charge density in turn induces conformational changes of the adsorbing polyelectrolyte molecules. Their photocontrolled adsorption opens new possibilities for selective manipulation of adsorbed films. This possibility is of potential importance for many applications such as the production of well-defined coatings in biosensors or microelectronics
- …
