2,340 research outputs found
Distribution of hydrogen peroxide and methylhydroperoxide over the Pacific and South Atlantic Oceans
The gas phase hydrogen peroxide and methylhydroperoxide concentrations were measured in the troposphere over the tropical Pacific Ocean as a component of NASA's Global Tropospheric Experiment/Pacific Exploratory Mission-Tropics A field campaign. Flights on two aircraft covered the Pacific from 70°S to 60°N and 110°E to 80°W and South Atlantic from 40°S to 15°N and 45°W to 70°E, and extending from 76 to 13,000 m altitude. H2O2 and CH3OOH have the highest concentrations at a given altitude at the equator and decrease with increasing latitude in both the northern and southern hemispheres. Above 4 km the gradient is substantially reduced for both H2O2 and CH3OOH with latitude, and at altitudes in excess of 8 km there is no latitudinal dependence. H2O2 and CH3OOH exhibit maximum mixing ratios between 1 and 2 km at all latitudes. The mean mixing ratio of H2O2 at the equator was 1600 ± 600 parts per trillion by volume (pptv) decreasing to 500 ± 250 pptv at latitudes greater than 55° north and south between 1 and 2 km altitude. CH3OOH at the equator was 1400 ± 250 pptv, decreasing to 330 ± 200 pptv at high latitudes at altitudes between 1 and 2 km. The concentration of peroxides at high latitudes in the northern hemisphere was generally a factor of 2 higher than at corresponding latitudes in the southern hemisphere. The ratio of H2O2 to CH3OOH was between 1 and 2 from 45°S to 35°N at altitudes below 4 km. Between 5° to 15°N the ratio is less than 1, due to preferential removal of H2O2 in the Intertropical Convergence Zone. Copyright 1999 by the American Geophysical Union
INFLUENCE OF PLUMES FROM BIOMASS BURNING ON ATMOSPHERIC CHEMISTRY OVER THE EQUATORIAL AND TROPICAL SOUTH-ATLANTIC DURING CITE-3
Recommended from our members
Chemical signatures of aged Pacific marine air: Mixed layer and free troposphere as measured during PEM-West A
The Pacific Ocean is one of the few remaining regions of the northern hemisphere that is relatively free of direct anthropogenic emissions. However, long-range transport of air pollutants is beginning to have a significant impact on the atmosphere over the Pacific. In September and October 1991, NASA conducted the Pacific Exploratory Mission-West A expedition to study the atmospheric chemistry and background budgets of key atmospheric trace species. Aircraft sampling centered on the northern Pacific, 0° to 40°N and 115° to 180°E. The paper summarizes the chemical signature of relatively well-aged Pacific marine air (residence time ≥10 days over the ocean). The chemical signatures show that marine air is not always devoid of continental influences. Aged marine air which circulates around the semipermanent subtropical anticyclone located off the Asian continent is influenced by infusion of continental air with anthropogenic emissions. The infusion occurs as the result of Asian outflow swept off the continent behind eastward moving cold fronts. When compared to aged marine air with a more southerly pathway, this infusion results in enhancements in the mixing ratio of many anthropogenic/continental species and typically those with lifetimes of weeks in the free troposphere. Less enhancement is seen for the short-lived species with lifetimes of a few days as infused continental emissions are depleted during transport (about a week) around the semipermanent subtropical high. Copyright 1996 by the American Geophysical Union
Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts
The NASA Global Tropospheric Experiment (GTE) Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) expedition was conducted September 21 through October 26, 1992, to investigate factors responsible for creating the seasonal South Atlantic tropospheric ozone maximum. During these flights, fine aerosol (0.1-3.0 μm) number densities were observed to be enhanced roughly tenfold over remote regions of the tropical South Atlantic and greater over adjacent continental areas, relative to northern hemisphere observations and to measurements recorded in the same area during Ac wet season. Chemical and meteorological analyses as well as visual observations indicate that the primary source of these enhancements was biomass burning occurring within grassland regions of north central Brazil and southeastern Africa. These fires exhibited fine aerosol (N) emission ratios relative to CO (dN/dCO) of 22.5 ± 9.7 and 23.6 ± 15.1 cm-3 parts per billion by volume (ppbv)-1 over Brazil and Africa, respectively. Convection coupled with counterclockwise flow around the South Atlantic subtropical anticyclone subsequently distributed these aerosols throughout the remote South Atlantic troposphere. We calculate that dilute smoke from biomass burning produced an average tenfold enhancement in optical depth over the continental regions as well as a 50% increase in this parameter over the middle South Atlantic Ocean; these changes correspond to an estimated net cooling of up to 25 W m-2 and 2.4 W m-2 during clear-sky conditions over savannas and ocean respectively. Over the ocean our analyses suggest that modification of CCN concentrations within the persistent eastern Atlantic marine stratocumulus clouds by entrainment of subsiding haze layers could significantly increase cloud albedo resulting in an additional surface radiative cooling potentially greater in magnitude than that caused by direct extinction of solar radiation by the aerosol particles themselves
An Animal Model of Alzheimer\u27s: The Use of the Neurotoxin AF64A in Combination with Glucocorticoids to Differentiate the Importance of Cholinergic Pathways in Learning and Memory
Recommended from our members
Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate
In situ measurements of a large number of trace chemicals from the midlatitude (37-57°N) lower stratosphere were performed with the NASA DC-8 aircraft during March 1994. Deepest penetrations into the stratosphere (550 ppb O3, 279 ppb N2O, and 350 K potential temperature) corresponded to a region that has been defined as the "lowermost stratosphere" (LS) by Holton et al [1995]. Analysis of data shows that the mixing ratios of long-lived tracer species (e. g. CH4, HNO3, NOy, CFCs) are linearly correlated with those of O3 and N2O. A ΔNOy/ΔO3 of 0.0054 ppb/ppb and ΔNOy/ΔN2O of -0.081 ppb/ppb is in good agreement with other reported measurements from the DC-8. These slopes are however, somewhat steeper than those reported from the ER-2 airborne studies. We find that the reactive nitrogen budget in the LS is largely balanced with HNO3 accounting for 80% of NOy, and PAN and NOx together accounting for 5%. A number of oxygenated species (e. g. acetone, H2O2) were present and may provide an important in situ source of HOx in the LS. SO2 mixing ratios were found to increase in the stratosphere at a rate that was comparable to the decline in OCS levels. No evidence of particle formation could be observed. Ethane, propane, and acetylene mixing ratios declined rapidly in the LS with Cl atoms likely playing a key role in this process. A number of reactive hydrocarbons/halocarbons (e. g. C6H6, CH3I) were present at low but measurable concentrations
- …
