7,915 research outputs found
A participatory methodology for large scale field trials in the UK
Farmer participation was essential in developing a uniquely useful set of wheat variety trials data on a wide range of organic farms over two years. Although the trials were successful, it became clear that some of the participating farmers felt there were some limitations in the process. These included a lack of ownership in the project and a concern for more researcher help. It was clear that a greater time in-vestment was needed at the start of the project to help with farmer understanding and ownership. De-spite the negative comments, farmers appreciated their involvement, particularly in contrasting their own views and information with that from the wider scene. Farmer participation is essential for systems-level research and this project helped to develop a small core of trained farmers and researchers
Measurements of PAN, alkyl nitrates, ozone, and hydrocarbons during spring in interior Alaska
Measurements of the atmospheric mixing ratios of ozone, peroxyacetylnitrate (PAN), hydrocarbons, and alkyl nitrates were made in a boreal forest ecosystem in the interior of Alaska from March 15 to May 14, 1993. During this period the mixing ratios of PAN, alkyl nitrates, and nonmethane hydrocarbons (NMHCs) generally decreased due to the influence of both meteorology and OH removal. Mean mixing ratios of ozone, PAN, C2 ‐ C6 alkyl nitrates, and total C2 ‐ C5 NMHC during southerly flow periods were 24.4 parts per billion (ppbv), 132.1 parts per trillion (pptv ), 34 pptv, and 8.2 ppbCv, respectively. During a short period of northerly flow, mixing ratios of PAN and total NMHC were approximately 2 times the southerly flow mixing ratios. PAN is correlated with ozone, and alkyl nitrates are correlated with alkanes. PAN and ozone mixing ratios exhibit similar diurnal variations on a number of days with an early morning minimum and afternoon maximum. This is likely due to a diurnal cycle in the boundary layer ‐ free troposphere exchange and loss processes in the boundary layer for both O3 and PAN. Higher molecular weight (mw) hydrocarbons and alkyl nitrates are observed to decrease more quickly than the lower mw hydrocarbons, consistent with removal by OH as the primary loss process
Recommended from our members
Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS during the First Aerosol Characterization Experiment (ACE 1)
Canister sampling for the determination of atmospheric mixing ratios of nonmethane hydrocarbons (NMHCs), selected halocarbons, and methyl nitrate was conducted aboard the National Center for Atmospheric Research (NCAR) C-130 aircraft over the Pacific and Southern Oceans as part of the First Aerosol Characterization Experiment (ACE 1) during November and December 1995. A latitudinal profile, flown from 76°N to 60°S, revealed latitudinal gradients for most trace gases. NMHC and halocarbon gases with predominantly anthropogenic sources, including ethane, ethyne, and tetrachloroethene, exhibited significantly higher mixing ratios in the northern hemisphere at all altitudes. Methyl chloride exhibited its lowest mixing ratios at the highest northern hemisphere latitudes, and the distributions of methyl nitrate and methyl iodide were consistent with tropical and subtropical oceanic sources. Layers containing continental air characteristic of aged biomass burning emissions were observed above about 3 km over the remote southern Pacific and near New Zealand between approximately 19°S and 43°S. These plumes originated from the west, possibly from fires in southern Africa. The month-long intensive investigation of the clean marine southern midlatitude troposphere south of Australia revealed decreases in the mixing ratios of ethane, ethyne, propane, and tetrachloroethene, consistent with their seasonal mixing ratio cycle. By contrast, increases in the average marine boundary layer concentrations of methyl iodide, methyl nitrate, and dimethyl sulfide (DMS) were observed as the season progressed to summer conditions. These increases were most appreciable in the region south of 44°S over Southern Ocean waters characterized as subantarctic and polar, indicating a seasonal increase in oceanic productivity for these gases. Copyright 1999 by the American Geophysical Union
Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns 2. Airborne observations
During late March and April of 1999 the University of Wyoming's King Air research aircraft measured atmospheric concentrations of NO, O3, peroxyacetyl nitrate (PAN), CO, CH4, VOCs, aerosols, and J(NO2) off the west coast of the United States. During 14 flights, measurements were made between 39°-48° N latitude, 125°-129° W longitude, and at altitudes from 0-8 km. These flights were part of the Photochemical Ozone Budget of the Eastern North Pacific Atmosphere (PHOBEA) experiment, which included both ground-based and airborne measurements. Flights were scheduled when meteorological conditions minimized the impact of local pollution sources. The resulting measurements were segregated by air mass source region as indicated by back isentropic trajectory analysis. The chemical composition of marine air masses whose 5-day back isentropic trajectories originated north of 40° N latitude or west of 180° W longitude (WNW) differed significantly from marine air masses whose 5-day back isentropic trajectories originated south of 40° N latitude and east of 180° W longitude (SW). Trajectory and chemical analyses indicated that the majority of all encountered air masses, both WNW and SW, likely originated from the northwestern Pacific and have characteristics of emissions from the East Asian continental region. However, air masses with WNW back trajectories contained higher mixing ratios of NO, NOx, O3, PAN, CO, CH4, various VOC pollution tracers, and aerosol number concentration, compared to those air masses with SW back trajectories. Calculations of air mass age using two separate methods, photochemical and back trajectory, are consistent with transport from the northwestern Pacific in 8-10 days for air masses with WNW back trajectories and 16-20 days for air masses with SW back trajectories. Correlations, trajectory analysis, and comparisons with measurements made in the northwestern Pacific during NASA's Pacific Exploritory Mission-West Phase B (PEM-West B) experiment in 1994 are used to investigate the data. These analyses provide evidence that anthropogenically influenced air masses from the northwestern Pacific affect the overall chemical composition of the northeastern Pacific troposphere. Copyright 2001 by the American Geophysical Union
Analisis Perbedaan Manajemen Laba Sebelum Dan Sesudah Pengadopsian International Financial Reporting Standard (Ifrs) Pada Perusahaan Manufaktur Di Indonesia (Studi Empiris pada Perusahaan Manufaktur yang Terdaftar di Bursa Efek Indonesia Tahun 2011-2012)
Penelitian ini berjudul “Analisis Perbedaan Manajemen Laba Sebelum dan Sesudah Pengadopsian International Financial Reporting Standard (IFRS) pada Perusahaan Manufaktur di Indonesia (Studi Empiris pada Perusahaan Manufaktur yang Terdaftar di Bursa Efek Indonesia Tahun 2011-2012)”. Tujuan dari penelitian ini adalah untuk mengetahui ada atau tidak adanya perbedaan dari praktik manajemen laba antara sebelum dan sesudah mengadopsi IFRS pada jenis perusahaan manufaktur.
Data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari laporan tahunan perusahaan yang terdaftar di Bursa Efek Indonesia periode 2011-2012 yang diakses langsung melalui website www.idx.co.id. Populasi penelitian ini adalah perusahaan manufaktur yang terdaftar di Bursa efek Indonesia pada tahun 2011-2012. Pemilihan sampel menggunakan metode simple random sampling dan didapatkan sampel sebanyak 47 perusahaan. Penelitian ini merupakan penelitian komparatif (Comparative Research) yang dilakukan dengan menggunakan metode analisis paired sample t-test.
Dari hasil pengujian didapatkan bahwa ada perbedaan praktik manajemen laba yang signifikan antara sebelum dan setelah mengadopsi International Financial Reporting Standard (IFRS)
Mangarara Formation: exhumed remnants of a middle Miocene, temperate carbonate, submarine channel-fan system on the eastern margin of Taranaki Basin, New Zealand
The middle Miocene Mangarara Formation is a thin (1–60 m), laterally discontinuous unit of moderately to highly calcareous (40–90%) facies of sandy to pure limestone, bioclastic sandstone, and conglomerate that crops out in a few valleys in North Taranaki across the transition from King Country Basin into offshore Taranaki Basin. The unit occurs within hemipelagic (slope) mudstone of Manganui Formation, is stratigraphically associated with redeposited sandstone of Moki Formation, and is overlain by redeposited volcaniclastic sandstone of Mohakatino Formation. The calcareous facies of the Mangarara Formation are interpreted to be mainly mass-emplaced deposits having channelised and sheet-like geometries, sedimentary structures supportive of redeposition, mixed environment fossil associations, and stratigraphic enclosure within bathyal mudrocks and flysch. The carbonate component of the deposits consists mainly of bivalves, larger benthic foraminifers (especially Amphistegina), coralline red algae including rhodoliths (Lithothamnion and Mesophyllum), and bryozoans, a warm-temperate, shallow marine skeletal association. While sediment derivation was partly from an eastern contemporary shelf, the bulk of the skeletal carbonate is inferred to have been sourced from shoal carbonate factories around and upon isolated basement highs (Patea-Tongaporutu High) to the south. The Mangarara sediments were redeposited within slope gullies and broad open submarine channels and lobes in the vicinity of the channel-lobe transition zone of a submarine fan system. Different phases of sediment transport and deposition (lateral-accretion and aggradation stages) are identified in the channel infilling. Dual fan systems likely co-existed, one dominating and predominantly siliciclastic in nature (Moki Formation), and the other infrequent and involving the temperate calcareous deposits of Mangarara Formation. The Mangarara Formation is an outcrop analogue for middle Miocene-age carbonate slope-fan deposits elsewhere in subsurface Taranaki Basin, New Zealand
Streams of data from drops of water: 21st century molecular microbial ecology
Microorganisms are ubiquitous and represent a taxonomically and functionally diverse component of freshwater environments of significant ecological importance. The bacteria, archaea, and microbial eukarya in freshwater systems support a range of ecosystem processes and functions, including mediating all major biogeochemical cycles, and therefore regulate the flow of multiple ecosystem services. Yet relative to conspicuous higher taxa, microbial ecology remains poorly understood. As the anthropocene progresses, the demand for freshwater–ecosystem services is both increasing with growing human population density, and by association, increasingly threatened from multiple and often interacting stressors, such as climate change, eutrophication, and chemical pollution. Thus, it is imperative to understand the ecology of microorganisms and their functional role in freshwater ecosystems if we are to manage the future of these environments effectively. To do this, researchers have developed a vast array of molecular tools that can illuminate the diversity, composition, and activity of microbial communities. Within this primer, we discuss the history of molecular approaches in microbial ecology, and highlight the scope of questions that these methods enable researchers to address. Using some recent case studies, we describe some exemplar research into the microbial ecology of freshwater systems, and emphasize how molecular methods can provide novel ecological insights. Finally, we detail some promising developments within this research field, and how these might shape the future research landscape of freshwater microbial ecology
Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
- …
