555 research outputs found

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    Environment Orientation : a structured simulation approach for agent-based complex systems

    Get PDF
    Complex systems are collections of independent agents interacting with each other and with their environment to produce emergent behaviour. Agent-based computer simulation is one of the main ways of studying complex systems. A naive approach to such simulation can fare poorly, due to large communication overhead, and due to the scope for deadlock between the interacting agents sharing a computational platform. Agent interaction can instead be considered entirely from the point of view of the environment(s) within which the agents interact. Structuring a simulation using such Environment Orientation leads to a simulation that reduces communication overhead, that is effectively deadlock-free, and yet still behaves in the manner required. Additionally the Environment Orientation architecture eases the development of more sophisticated large-scale simulations, with multiple kinds of complex agents, situated in and interacting with multiple kinds of environments. We describe the Environment Orientation simulation architecture. We report on a number of experiments that demonstrate the effectiveness of the Environment Orientation approach: a simple flocking system, a flocking system with multiple sensory environments, and a flocking system in an external environment

    Sharing Space: The Presence of Other Bodies Extends the Space Judged as Near

    Get PDF
    Background: As social animals we share the space with other people. It is known that perceived extension of the peripersonal space (the reaching space) is affected by the implicit representation of our own and other's action potentialities. Our issue concerns whether the co-presence of a body in the scene influences our extrapersonal space (beyond reaching distance) categorization. Methodology/Principal Findings: We investigated, through 3D virtual scenes of a realistic environment, whether egocentric spatial categorization can be influenced by the presence of another human body (Exp. 1) and whether the effect is due to her action potentialities or simply to her human-like morphology (Exp. 2). Subjects were asked to judge the location ("Near" or "Far") of a target object located at different distances from their egocentric perspective. In Exp. 1, the judgment was given either in presence of a virtual avatar (Self-with-Other), or a non-corporeal object (Self-with-Object) or nothing (Self). In Exp. 2, the Self condition was replaced by a Self-with-Dummy condition, in which an inanimate body (a wooden dummy) was present. Mean Judgment Transition Thresholds (JTTs) were calculated for each subject in each experimental condition. Self-with-Other condition induced a significant extension of the space judged as "Near" as compared to both the Selfwith- Object condition and the Self condition. Such extension was observed also in Exp. 2 in the Self-with-Dummy condition. Results suggest that the presence of others impacts on our perception of extrapersonal space. This effect holds also when the other is a human-like wooden dummy, suggesting that structural and morphological shapes resembling human bodies are sufficient conditions for the effect to occur. Conclusions: The observed extension of the portion of space judged as near could represent a wider portion of "accessible" space, thus an advantage in the struggle to survive in presence of other potential competing individuals

    Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: a study in older adults

    Get PDF
    This paper describes some novel spatial tasks and questionnaires designed to assess spatial and orientation abilities. The new tasks and questionnaires were administered to a sample of 90 older adults (41 males, age range 57–90), along with some other tests of spatial ability (Minnesota Paper Form Board, Mental Rotations Test, and Embedded Figures Test) and tests of visuospatial working memory (Corsi’s Block Test and Visual Pattern Test). The internal reliability of the new tasks and questionnaires was analyzed, as well as their relationship with the spatial and working memory tests. The results showed that the new spatial tasks are reliable, correlate with working memory and spatial ability tests and, compared with the latters, show stronger correlations with the self-report questionnaires referring to orientation abilities. A model was also tested (with reference to Allen et al. in Intelligence 22:327–355, 1996) in which the new tasks were assumed to relate to spatial ability and predict orientation abilities as assessed by the self-report measures

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation

    Forecasting daily attendances at an emergency department to aid resource planning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate forecasting of emergency department (ED) attendances can be a valuable tool for micro and macro level planning.</p> <p>Methods</p> <p>Data for analysis was the counts of daily patient attendances at the ED of an acute care regional general hospital from July 2005 to Mar 2008. Patients were stratified into three acuity categories; i.e. P1, P2 and P3, with P1 being the most acute and P3 being the least acute. The autoregressive integrated moving average (ARIMA) method was separately applied to each of the three acuity categories and total patient attendances. Independent variables included in the model were public holiday (yes or no), ambient air quality measured by pollution standard index (PSI), daily ambient average temperature and daily relative humidity. The seasonal components of weekly and yearly periodicities in the time series of daily attendances were also studied. Univariate analysis by t-tests and multivariate time series analysis were carried out in SPSS version 15.</p> <p>Results</p> <p>By time series analyses, P1 attendances did not show any weekly or yearly periodicity and was only predicted by ambient air quality of PSI > 50. P2 and total attendances showed weekly periodicities, and were also significantly predicted by public holiday. P3 attendances were significantly correlated with day of the week, month of the year, public holiday, and ambient air quality of PSI > 50.</p> <p>After applying the developed models to validate the forecast, the MAPE of prediction by the models were 16.8%, 6.7%, 8.6% and 4.8% for P1, P2, P3 and total attendances, respectively. The models were able to account for most of the significant autocorrelations present in the data.</p> <p>Conclusion</p> <p>Time series analysis has been shown to provide a useful, readily available tool for predicting emergency department workload that can be used to plan staff roster and resource planning.</p

    A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared.</p> <p>Methods</p> <p>Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes.</p> <p>Results</p> <p>K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time.</p> <p>Conclusions</p> <p>K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay was suitable for evaluating fungal infectivity and virulence, allowing optimizations of spore dose and exposure time. Use of this standardized application method will help achieve reliable results that are exchangeable between different laboratories.</p

    EMSY links breast cancer gene 2 to the 'Royal Family'

    Get PDF
    Although the role of the breast cancer gene 2 (BRCA2) tumor suppressor gene is well established in inherited breast and ovarian carcinomas, its involvement in sporadic disease is still uncertain. The recent identification of a novel BRCA2 binding protein, EMSY, as a putative oncogene implicates the BRCA2 pathway in sporadic tumors. Furthermore, EMSY's binding to members of the 'Royal Family' of chromatin remodeling proteins may lead to a better understanding of the physiological function of BRCA2 and its role in chromatin remodeling
    corecore