3,339 research outputs found
Inhibition of Liver Cytochrome P450 Isoforms 1A1 and 1A2 by Brazilian Acai Berry Extracts
Undergraduate
Basi
Ionic liquids for energy, materials, and medicine.
As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).
Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
- …
