313 research outputs found

    Projeções de consumo de madeira com fins energéticos para secagem de grãos na região de Guarapuava, PR.

    Get PDF
    O objetivo principal deste artigo foi avaliar a capacidade potencial da indústria madeireira em atender às necessidades da secagem dos grãos produzidos na região de Guarapuava em florestas plantadas de eucalipto voltadas à produção de energia a partir de sua biomassa. Sob a ótica metodológica, a pesquisa caracterizou-se pela natureza aplicada, enfoque quantitativo e caráter explicativo e por estar fundamentada nos princípios de cadeias produtivas e de demanda derivada. Os resultados indicaram que normalmente os plantios energéticos de eucalipto na região apresentam produtividade de 40 m³/ha/ano. Os grãos de milho, soja, trigo e cevada passam por processos de secagem na região. Utiliza-se 0,0574 m³ de madeira de eucalipto para secar uma tonelada de milho, 0,0218 m³ por tonelada de soja, 0,0224 m³ por tonelada de trigo e 0,0258 m³ por tonelada de cevada. Estimou-se que, entre os anos de 2012 e 2022, a área total necessária para atender a secagem desses grãos pode variar entre 1.947 e 4.800 ha, com média entre 177 ha e 436,4 ha, conforme o cenário analisado. Os resultados indicam a necessidade da integração dos plantios florestais de eucalipto às cadeias produtivas agrícolas, visando ao atendimento das necessidades de secagem de grãos da região. Palavras-chave: Produção florestal; energia da biomassa; secagem de grãos

    Transcription factor expression landscape in Drosophila embryonic cell lines

    Get PDF
    Background: Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. Results: Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell–cell signaling pathways, and eye development. Conclusions: We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells. © The Author(s) 2024

    Transcriptome profile in Drosophila Kc and S2 embryonic cell lines

    Get PDF
    Drosophila melanogaster cell lines are an important resource for a range of studies spanning genomics, molecular genetics, and cell biology. Amongst these valuable lines are Kc167 (Kc) and Schneider 2 (S2) cells, which were originally isolated in the late 1960s from embryonic sources and have been used extensively to investigate a broad spectrum of biological activities including cell-cell signaling and immune system function. Whole-genome tiling microarray analysis of total RNA from these two cell types was performed as part of the modENCODE project over a decade ago and revealed that they share a number of gene expression features. Here, we expand on these earlier studies by using deep-coverage RNA-sequencing approaches to investigate the transcriptional profile in Kc and S2 cells in detail. Comparison of the transcriptomes reveals that ∼75% of the 13,919 annotated genes are expressed at a detectable level in at least one of the cell lines, with the majority of these genes expressed at high levels in both cell lines. Despite the overall similarity of the transcriptional landscape in the two cell types, 2,588 differentially expressed genes are identified. Many of the genes with the largest fold change are known only by their CG designations, indicating that the molecular control of Kc and S2 cell identity may be regulated in part by a cohort of relatively uncharacterized genes. Our data also indicate that both cell lines have distinct hemocyte-like identities, but share active signaling pathways and express a number of genes in the network responsible for dorsal-ventral patterning of the early embryo. © The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America

    MARZ: An algorithm to combinatorially analyze gapped n-mer models of transcription factor binding

    Get PDF
    Background: A key challenge in understanding the molecular mechanisms that control gene regulation is the characterization of the specificity with which transcription factor proteins bind to specific DNA sequences. A number of computational approaches have been developed to examine these interactions, including simple mononucleotide and dinucleotide position weight matrix models. Results: Here we develop a novel, unbiased computational algorithm, MARZ, that systematically analyzes all possible gapped matrices across a fixed number of nucleotides. In addition, to evaluate the ability of these matrix models to predict in vivo binding sites, we utilize a new scoring system and, in combination with established scoring methods and statistical analysis, test the performance of 32 different gapped matrices on the well characterized HUNCHBACK transcription factor in Drosophila. Conclusions: Our results indicate that in many cases gapped matrix models can outperform traditional models, but that the relative strength of the binding sites considered in the analysis can profoundly influence the predictive ability of specific models

    Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA

    Get PDF
    Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions

    Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii

    Get PDF
    During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses

    Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: the future for therapy of autoimmune disease?

    Get PDF
    Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific ‘tolerogenic’ HSCT therapy

    Rapid and efficient purification of Drosophila homeodomain transcription factors for biophysical characterization

    Get PDF
    Homeodomain transcription factors (HD TFs) are a large class of evolutionarily conserved DNA binding proteins that contain a basic 60-amino acid region required for binding to specific DNA sites. In Drosophila melanogaster, many of these HD TFs are expressed in the early embryo and control transcription of target genes in development through their interaction with cis-regulatory modules. Previous studies where some of the Drosophila HD TFs were purified required the use of strong denaturants (i.e. 6 M urea) and multiple chromatography columns, making the downstream biochemical examination of the isolated protein difficult. To circumvent these obstacles, we have developed a streamlined expression and purification protocol to produce large yields of Drosophila HD TFs. Using the HD TFs FUSHI-TARAZU (FTZ), ANTENNAPEDIA (ANTP), ABDOMINAL-A (ABD-A), ABDOMINAL-B (ABD-B), and ULTRABITHORAX (UBX) as examples, we demonstrate that our 3-day protocol involving the overexpression of His 6 -SUMO fusion constructs in E. coli followed by a Ni 2+ -IMAC, SUMO-tag cleavage with the SUMO protease Ulp1, and a heparin column purification produces pure, soluble protein in biological buffers around pH 7 in the absence of denaturants. Electrophoretic mobility shift assays (EMSA) confirm that the purified HD proteins are functional and nuclear magnetic resonance (NMR) spectra confirm that the purified HDs are well-folded. These purified HD TFs can be used in future biophysical experiments to structurally and biochemically characterize how and why these HD TFs bind to different DNA sequences and further probe how nucleotide differences contribute to TF-DNA specificity in the HD family. Under Green Open Access, this is the Accepted Manuscript version of this article, accepted for publication in Protein Expression and Purification

    The Dictyostelium discoideum genome lacks significant DNA methylation and uncovers palindromic sequences as a source of false positives in bisulfite sequencing

    Get PDF
    DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, is an evolutionarily conserved epigenetic mark involved in a number of different biological functions in eukaryotes, including transcriptional regulation, chromatin structural organization, cellular differentiation and development. In the social amoeba Dictyostelium, previous studies have shown the existence of a DNA methyltransferase (DNMA) belonging to the DNMT2 family, but the extent and function of 5-methylcytosine in the genome are unclear. Here, we present the whole genome DNA methylation profile of Dictyostelium discoideum using deep coverage replicate sequencing of bisulfite-converted gDNA extracted from post-starvation cells. We find an overall very low number of sites with any detectable level of DNA methylation, occurring at significant levels in only 303-3432 cytosines out of the ∼7.5 million total cytosines in the genome depending on the replicate. Furthermore, a knockout of the DNMA enzyme leads to no overall decrease in DNA methylation. Of the identified sites, significant methylation is only detected at 11 sites in all four of the methylomes analyzed. Targeted bisulfite PCR sequencing and computational analysis demonstrate that the methylation profile does not change during development and that these 11 cytosines are most likely false positives generated by protection from bisulfite conversion due to their location in hairpin-forming palindromic DNA sequences. Our data therefore provide evidence that there is no significant DNA methylation in Dictyostelium before fruiting body formation and identify a reproducible experimental artifact from bisulfite sequencing. © 2023 The Author(s). Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics
    corecore