6 research outputs found
Exploring the Free Energy Landscape: From Dynamics to Networks and Back
The knowledge of the Free Energy Landscape topology is the essential key to
understand many biochemical processes. The determination of the conformers of a
protein and their basins of attraction takes a central role for studying
molecular isomerization reactions. In this work, we present a novel framework
to unveil the features of a Free Energy Landscape answering questions such as
how many meta-stable conformers are, how the hierarchical relationship among
them is, or what the structure and kinetics of the transition paths are.
Exploring the landscape by molecular dynamics simulations, the microscopic data
of the trajectory are encoded into a Conformational Markov Network. The
structure of this graph reveals the regions of the conformational space
corresponding to the basins of attraction. In addition, handling the
Conformational Markov Network, relevant kinetic magnitudes as dwell times or
rate constants, and the hierarchical relationship among basins, complete the
global picture of the landscape. We show the power of the analysis studying a
toy model of a funnel-like potential and computing efficiently the conformers
of a short peptide, the dialanine, paving the way to a systematic study of the
Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press
Application of 3D Zernike descriptors to shape-based ligand similarity searching
Background: The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. Results: In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD) for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR) and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability
